Housing Is the Financial Cycle:
Evidence from 100 Years of Local Building Permits

Gustavo S. CorTes’ CAMERON LaPoinT?
University of Florida Yale SOM
September 2025

[ LATEST VERSION HERE |

Abstract

Does the housing market lead the financial cycle, and if so, why? We address these questions
by creating a new hand-collected database spanning a century of monthly building permit
quantities and valuations for all U.S. states and the 60 largest MSAs. We show that the
option to build embedded in permits renders volatility in residential building permit growth
(BPG) a strong predictor of aggregate and cross-sectional stock and corporate bond returns
and return volatility. This predictability remains even after conditioning on corporate and
household leverage, commodity price risk, and firms’ exposure through their network of
plants to other localized physical risks like natural disasters. Cities and states with more
elastic housing supply consistently predict financial market downturns at 12-month horizons,
resulting in new trading strategies to hedge against overbuilding risk. A noisy rational
expectations framework in which local building permits serve as a quasi-public signal for
dividends explains these empirical patterns.
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“My goal is to provide unforgettable images that leave a lasting impression
regarding the importance of housing to what we call the business cycle.”
— Ep LEaMER (2007). “Housing Is the Business Cycle,”

2007 Jackson Hole Economic Symposium.

1 INTRODUCTION

Economists have long sought to understand the relationship between housing markets and the
economy. Almost a century ago, Long (1939b) wrote that “the building industry is probably the
most strategic single factor in making or breaking booms and depressions.” From the Great Depression
of the 1930s to the Global Financial Crisis in 2008, fluctuations in the housing market often
precede (Moore, 1961) and even predict significant economic downturns (Green, 1997; Leamer,
2007, 2015). This idea is reinforced by the observation of “twin bubbles” in asset markets, where
real estate prices and sales volume reach their apex several months before similar peaks occur
in the stock market during economic expansions.! The recurring pattern of housing market
distress preceding broader economic turmoil presents a compelling challenge for economists and
policymakers. Yet, our understanding of these macro-financial links remains limited, primarily
due to a persistent shortage of granular, long-term data tracking local housing market dynamics.?
This data gap has forced researchers to rely heavily on aggregate time series evidence, leaving
relatively unexplored how local housing market conditions ripple through financial markets
and affect the real economy.

In this paper, we provide a comprehensive examination of the links between local housing
markets and financial market conditions. By constructing a new dataset of U.S. historical local
building permits from 1919 to 2019, we investigate whether housing cycles predict the financial
cycle. Applying recent advances in optical character recognition (OCR) techniques and deep
learning algorithms, we digitize a wealth of archival records from Census surveys and industry
reports to create continuous time series of monthly residential building permit activity for all 50
states and the 60 largest metropolitan areas. Our geographically disaggregated data on permits

allow us to examine the predictive power of housing market fluctuations for local economic

IPronounced examples of the “twin bubbles” time series phenomenon include the 1920s Florida Land Boom,
which preceded the Great Depression (Knowlton, 2020; Calomiris and Jaremski, 2023); 1980s Japan—where Tokyo
area land prices flat-lined in 1987 before the Nikkei crash in January 1990 (LaPoint, 2021); the 2000s U.S., where cities
with elastic housing supply like Las Vegas experienced downturns in 2006 before Lehman’s 2008 fall (Nathanson and
Zwick, 2018); and more recently with Chinese residential property prices dropping in mid-2014 before the Shanghai
Stock Exchange crash of June 2015 (Liu and Xiong, 2018).

ZEarlier attempts to highlight boom-bust cycles in the U.S. construction sector focused on residential permit series
aggregated from different sets of cities at annual frequency. See Riggleman (1932), Long (1939a), and Isard (1942) for
early examples. An exception is Long (1936), who decomposes a permit series for Manhattan into residential and
non-residential buildings. Colean and Newcomb (1952) and Abramovitz (1964) highlight that these early indices face
sample selection bias issues due to non-comprehensive geographic coverage.

2



FIGURE 1. Total Real Value of U.S. Monthly Building Permits Issued, 1919-2019
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Notes: The figure plots the monthly total log real value of building permits issued in the U.S. and separately for
Florida and Connecticut from 1919M1 to 2019M12. The vertical dashed lines indicate the gap between the two sources
used in our full sample. Data for the first half of the sample is from Dun & Bradstreet’s, and the second half is from
the U.S. Census Bureau. We deflate permit values to real 2012 average USD using the monthly historical CPI from
Shiller (2015) before seasonally adjusting each series. We rank states from least to most housing supply elastic due to
regulation in terms of court cases filed mentioning the phrase “land use," as compiled by Ganong and Shoag (2017).
Connecticut ranks first in terms of land use regulatory stringency according to this measure, with eight times as
many average annual land use court cases per capita as Florida between 1940 and 2000. Grey-shaded areas indicate
NBER-dated recessions. See Appendix B for details on how we perform the seasonal adjustment and harmonize data
sources over the full hundred-year period.

activity, aggregate stock and corporate bond market volatility, and the volatility of individual

firms’ securities over a period spanning 20 recession episodes.

As illustrated by the century of U.S. real total building permit values plotted in Figure 1, our
main finding is that the volatility of local building permit growth (BPG) is a strong predictor
of future asset market volatility, even after controlling for a wide range of factors such as
corporate and household leverage ratios, natural disaster risk, population growth, and other
macroeconomic conditions like industrial production. We consistently uncover this pattern over
time, proving that building permits are not just a harbinger for particular types of financial crises,
such as the subprime mortgage episode in the years leading up to the Great Recession. Moreover,
we document that this predictability holds not only for the stock market but also the corporate
bond market, indicating that the housing market’s influence extends across asset classes.

The richness of our permits data allows us to geographically disaggregate the predictability
of housing market volatility. A handful of geographic submarkets drives this volatility; the
predictive power of BPG volatility is particularly strong and positive for more housing supply
elastic cities and states in the South (e.g., Florida and Georgia), which lead the stock and bond
markets by longer horizons relative to supply-inelastic regions like New England. For instance,



for every 10 percentage point increase in cumulative BPG volatility over the prior 12 months
in Florida, stock return volatility spikes by 0.2 percentage points, and bond return volatility
spikes by 0.7 percentage points. In contrast, BPG volatility has no clear predictive power for stock
return volatility over the same 12-month horizon in states with restrictive policies towards new
residential development (e.g., Connecticut). Figure 1 shows that while housing supply elastic
and inelastic areas largely comove, boom-busts in building permits are more pronounced in

elastic areas like Florida around crisis periods.

To further illustrate the type of soft information building permit volatility conveys to investors
in financial markets, we zoom in on the Global Financial Crisis. We observe that single-family
home BPG volatility has stronger predictability in states and metros with a large share of
subprime MBS loans on the eve of the crisis (Mayer and Pence, 2008). Since housing markets
co-move, the signals offered by BPG volatility may be collinear across locations. We therefore
conduct a principal components analysis (PCA). The first component alone delivers a 17% R?
for stock return volatility and a 20% R? for bond return volatility. Because jumps in the first
component anticipate well-known events in the narrative of the Global Financial Crisis, we label
the first component as the “subprime” factor. These jumps include the failure of Bear Stearns, the
Lehman Brothers bankruptcy, and the peak volume of foreclosure auction sales in the Summer of
2010. Interestingly, the subprime factor only emerges when we conduct PCA in a time window
around the GFC. When we use the full post-1960s time series, the first principal component
is instead dominated by input supply frictions around the oil crises of the 1970s. Hence, the

subprime factor we identify is distinct from a more general leverage build-up factor.

Although we emphasize that building permits predict return volatility across many episodes,
using recent decades for case studies helps us rule out confounding mechanisms by merging
in available corporate data. To gain further insights at more granular levels of observation,
we match listed firms to a registry of their plant locations to construct measures of their
physical exposure to BPG volatility weighted by their plants” sales or employment. For every 10
percentage point increase in cumulative BPG volatility exposure, a firm’s stock return volatility
increases by 0.1 percentage points, even after controlling for standard balance sheet variables
like EBITDA, Tobin’s Q, size, age, and leverage. Predictability in the cross-section of equities
gives rise to the possibility of using BPG volatility as a factor to design trading strategies
hedging against the geographic exposure of firms’ operations to real estate markets which

face a glut of new residential development.

We inspect the mechanisms through which volatility in building permits is a predictor of
the financial cycle. Building permits are valid predictors of macroeconomic risk because they
represent a type of call option. Real estate developers and investors use building permits as
an option to build, exercising their rights when macroeconomic prospects are favorable. In bad
economic times, agents choose not to exercise these options. This phenomenon is exemplified
by the “skyscraper wave” in New York City around the Great Depression, when permits for



remarkable buildings of the Manhattan skyline were delayed, built with a lower number of levels,
or never built (Barr, 2010; Nicholas and Scherbina, 2013; Cortes and Weidenmier, 2019).

With this intuition at hand, we formalize the mechanisms behind the observed connection
between building permits and macroeconomic risk by introducing a textbook real option value
theory (OVT) model of building permits (Geltner et al., 2014). We then embed the OVT model
for building permits within an asymmetric information framework of financial markets a la
Grossman and Stiglitz (1980). Our complete model features two types of markets: the first consists
of a continuum of local markets in which real estate investors decide whether or not to purchase
permits to develop their land at its highest and best use. Investors file a permit whenever the
project has positive expected net present value if executed. The value of a permit depends on the
probability of the project’s success—which is a function of time-varying factors such as local
employment prospects, weather, and regulatory shocks.

The second market consists of informed and uninformed investors who trade a risky asset in
fixed supply with noise. Informed investors observe both the asset’s price and a quasi-public
signal about future dividends, while uninformed investors only observe the price. We collapse
growth in aggregate permitting activity within each local market into a quasi-public signal
observed by the informed asset traders located in the same area. We recover a standard
CARA-normal demand system and show how asset pricing variables respond to changes in
the precision of the quasi-public signal, which maps directly to the BPG volatility factor we
probe in our empirical setting.

The model admits four main testable implications, which are supported by our empirical
findings. First, building permits proxy for local economic fundamentals. Second, movements in
permit volumes positively predict aggregate asset prices and returns at short horizons. Third,
the sign of comovement between BPG volatility and asset price or total return volatility is
heterogeneous across localities. The derivative of return volatility with respect to BPG volatility
has a theoretically ambiguous sign, and is more likely to be positive if an area has low levels of
BPG volatility—that is, closer to a balanced growth path, thus leading to more precise signals.
Hence, the model rationalizes why we estimate negative or near-zero loadings on BPG volatility
for some localities and time periods featuring high permit volatility. Fourth, the strength of
the predictability of BPG volatility is negatively correlated with the stringency of physical
and land use regulatory constraints on housing supply. We verify each of these predictions
over our century of permits data.

We introduce physical supply constraints into the model via a cap on the number of permits
that can be filed in a locality, which is independent of construction costs; physical constraints on
new construction consist of mountainous terrain and water or wetlands coverage (Saiz, 2010; Lutz
and Sand, 2023). We distinguish physical constraints from regulatory constraints (Gyourko et al.,
2008, 2021; Bartik et al., 2024), which we model as a profit wedge that raises construction costs,
rendering development more expensive in already built-up housing markets (Favilukis et al.,



2023). Importantly, the existence of land use regulations alone cannot explain the cross-sectional
patterns we observe in the longitudinal data given that many restrictions, other than minimum
lot size rules, were passed by homeowners in the post-1970s period (Shertzer et al., 2022), in
part, to preserve rising home equity values (Fischel, 2005).

Our paper makes several key contributions to the literature on the real estate sector and its
links with the macroeconomy. First, we provide new evidence from a century of geographically
disaggregated data in favor of the hypothesis that housing explains a large portion of the financial
cycle. Second, we introduce a new monthly factor, BPG volatility, for forecasting stock and
bond returns, which is orthogonal to other physical sources of risk at the firm level. Finally,
our newly constructed dataset offers a valuable resource for future research on local housing

supply and macroprudential housing policy.

We extend existing housing market research by constructing a comprehensive, long-run dataset
of U.S. building permits. Unlike previous studies that focused on house price indices at the
country level or individual cities (e.g., Knoll et al., 2017; Korevaar, 2023), our data provides
coverage across both granular geographies and time. We expand on the work of Stock and
Watson (2010), who digitized state-level historical Census Building Permits Survey (BPS) data
from 1969-2007, by extending the BPS data back to its 1959 inception for both states and MSAs,
as well as for single-family and multi-family units. More importantly, we splice the complete
BPS series with Dun & Bradstreet’s records dating back to 1919, accounting for changes in

geographic boundaries over time.

Combined with recent work on historical housing price indices (Lyons et al., 2024) and
construction sector productivity (D’Amico et al, 2024), our complete dataset offers new
facts about the evolution of U.S. housing supply over the twentieth century. In most states,
single-family permitting per capita peaked in the early 1970s and plummeted after the 2008
Financial Crisis. We show using permit panel microdata from CorelLogic Building Permits that
over 80% of permits issued for new residential units since 1990 are ultimately exercised, with
large differences in completion probabilities across states depending on the rigidity of local
planning laws. The fact that residential permit completion rates, especially for single-family units,
are high tells us that swings in permits translate to housing supply curve shifts. However, the fact
that completion rates are still well below 100% means that permits embed additional information
about investors’ beliefs beyond simply providing a housing market indicator that leads new
building starts. In a recent application of this insight, we show that declines in permits precede
housing market corrections, as measured by sharp declines in prices and rents, in 2022-2023 for
cities (like Austin, Texas) which experienced a large influx of work-from-home migrants during
the initial COVID-19 period of 2020-2021 (Hansen et al., 2023).

We also provide novel evidence supporting the hypothesis that housing explains a significant
portion of the financial cycle. An important innovation is introducing a new monthly factor,
BPG volatility, for forecasting stock returns. This factor is orthogonal to other physical sources



of risk at the firm level, offering a new perspective on the relationship between real estate
and financial markets. While previous research using modern Census BPS data has primarily
focused on forecasting indicators of the real economy, our work bridges the gap to financial
forecasting, expanding on studies like Ludvigson and Ng (2009) which explore macro factors’

predictive power for government bond returns.

We contribute to understanding the role of housing markets in financial crises and recessions
(Goetzmann and Newman, 2010; Brocker and Hanes, 2014; Fishback and Kollmann, 2014;
Gjerstad and Smith, 2014, White, 2014; Cortes and Weidenmier, 2019). We show that the
extent to which permits capture macroeconomic risk varies depending on pre-existing local
housing supply frictions, complementing recent evidence on how real estate markets transmit
capital flow shocks to local economic outcomes (Bednarek et al., 2021). We thus offer a
theoretical foundation for the heterogeneity in permit predictability observed in the geographic
cross-section. Our approach provides alternatives to traditional leverage and credit growth
explanations (Schularick and Taylor, 2012; Jorda et al.,, 2013; Greenwood et al., 2022; Miiller
and Verner, 2023), demonstrating that fluctuations in local housing markets help link “Main
Street” to “Wall Street” by providing informed, rational investors with a signal about local
economic activity. This perspective contrasts with studies focused on non-rational beliefs (Shiller,
1981, 2015) or over-optimism (Baron and Xiong, 2017), highlighting building permits as a

forward-looking indicator in the real estate market.

Beyond improvements to the measurement of links between real estate and financial markets,
our work helps resolve the “co-movement” puzzle. Kuvshinov (2025) finds using rent-price
ratios in the Jorda et al. (2019) database covering 17 countries over 150 years that cross-asset
predictability is limited, even after accounting for risk factors like bank leverage and real
credit. This lack of co-movement arises despite a robust prediction of macro-finance theories
that housing, equity, and corporate bond markets should positively co-move (e.g., Lettau and
Ludvigson, 2001; Piazzesi et al., 2007). Fama and French (2023) argue that the predictability of
house prices for future rents can be improved by across-area demeaning, because local housing
markets co-move. We propose a partial resolution to the co-movement puzzle by honing in on a
segment of the real estate market—permits for new construction—which is more forward looking
than house prices and transaction volume, and which is priced more like a financial asset than

pre-existing structures for which hedonic demand characteristics matter more.

2 THEORETICAL FRAMEWORK

In this section, we present a simple theoretical framework to highlight how local housing markets
are linked to fluctuations in risky asset prices. We derive testable predictions which we then take
to our longitudinal database of building permits. The model features two asset markets and two
periods, t and t + 1. In period ¢ developers make decisions on whether or not to acquire permits



to construct housing in each local market. Investors trade in nationwide financial markets after
observing in t prices and signals about future period t 41 dividends. Building permit volume
forms a local quasi-public signal observed by some investors playing an investment game with
information aggregation a la Grossman and Stiglitz (1980).

Housing development. Leti € [0,1] index a unit mass of potential housing market investors,
and s € {1,...,S} index the locality (e.g., a state, MSA, or county) where the property is located.
Developable land is in fixed supply L; < 1, and each investor can hold a permit on at most
one parcel. Standard real option value theory (OVT) says that the value of holding entitled
land is determined by the earnings potential of the underlying parcel less any construction
costs required to deploy the land at its highest and best use (Geltner et al., 2014). Therefore,
the expected value of a permit option if exercised depends on the probability of the project’s
success f(Xgt), the construction cost Cjs;+1, and the market value of the land L;,;+1 plus
the new building B;s;11 on top of it.

Suppose construction costs are paid in period f + 1 but known in ¢. If the project is successful,
then the property will be valued at its prevailing market price B;s;+1 + Liss+1. According to
standard development option pricing models, this land vs. building distinction is important for
extracting forward-looking sources of macroeconomic risk because uncertainty about payoffs
from exercising the option is positively linked to land values (Titman, 1985; Cunningham, 2006).

This setup leads us to the expected value of an exercised permit IE[V;% , 1]:

Et[Vis 1] = f(Xsp) - Et[Bisis1 + Liser1] — Cispst, (2.1)

The success probability f(X;;) depends on a vector of potentially time-varying factors Xy,
such as local macroeconomic fundamentals (e.g., unemployment) or the history of local weather
and regulatory shocks which could lead to delayed or rescinded approvals. A key feature of
our model—and supported by the data, as we show in Section 5—is that developments in
housing markets (Main Street) are predictive of financial market (Wall Street) movements due
to potentially unobserved elements of Xg.>

We can further simplify (2.1) by invoking a replacement cost approach to valuing buildings,
as adopted by Dun & Bradstreet’s for their permit series that we use in our pre-1960s analysis. If
buildings are always valued at their replacement cost, assuming the construction cost is inclusive

3The assumption that construction costs are known in advance simplifies the exposition, but does not affect the
model’s main empirical predictions. If we relax the assumptions that construction costs are known in advance and
project success depends only on realized fundamentals today, the expected value of the option in (2.1) becomes:

Et [V 11] = Bt [f(xs,H»l) “(Bis+1+ Ligtr1 — Ci,s,t+1)} ,

with the discount rate normalized to » = 0. Hence, it is without loss of generality to model the developer’s problem
as either an NPV decision rule or exercising a contingent claim on future states.



of any teardown costs or administrative fees, then B;,;.1 = Ci,s,t+1,Vi-4 Suppose further that
housing production is Cobb-Douglas, so land values are proportional to the attached structure’s
value: Lisi11 = @is - Bisi+1. Equivalently, the fraction of land in the housing production
function is ¢;s/(1 + ¢is), and it varies by parcel. The land value fraction is known to the
landowner, since each local assessor office splits the value of a parcel into building and land

components for levying property taxes.’

With these two simplifying assumptions, we can write the expected value of the exercised
option and current permit value V;;; as:

BilVioraa] = (@15 f(Xs) + (FXs) =1)) - Ciosin 22)

Vit = max{0, E[Vig 1]} (2.3)

Equation (2.3) follows the principle that the value of a permit depends only on the outcomes that
result in the call option with a strike price of C;; ;41 finishing in the money, otherwise it has zero
value (Natenberg, 2014). Combining (2.2) with (2.3), we learn that investors demand a permit
whenever a project has positive expected value—that is, if and only if f(Xs¢) > 1/(1+ @is)-
We also observe that standard building permit series which incorporate construction costs

are proportional to V;,;, but may miss the component of expected value originating from the
risk factors embedded in f(Xss).®

Aggregating up equation (2.3) and the decision embedded within it, we obtain aggregate local
permit values and permitting activity, respectively:

Vi = / Vig - di (2.4)
1

Q. = / 1{Vis; > 0} -di < L (2.5)
1

where Qs is equivalent to the total number of expected NPV positive projects in any period
t. Qs+ is bounded above by the developable land endowment in s.” We will posit that Qs and

permit volume growth rates g, = AlogQs: form quasi-public signals observed by informed

4In practice, investors also incur small fees for filing permit applications or obtaining certificates of occupancy,
both of which we have implicitly rolled into C;; ;1 1. We discuss these fees in Section 3.3.

5We have assumed that housing investors have rational expectations with respect to building values and that they
use the replacement cost approach. If it is the case that ¢; s = ¢, Vi, then in a given area all housing market investors
either permit or do not permit, up to the land endowment constraint Ls.

®Davis and Heathcote (2007) show that the share of land in aggregate U.S. housing value has increased since the
1970s, primarily due to declining substitutability of new homes for old homes. The assumption of a static ¢ is more
likely to hold for a context like 1920s Florida, where most housing was newly built. On average, between 1975 and
2006, 36% of aggregate U.S. housing value is land, implying ¢ = 0.56.

"We normalize the land endowment (and, consequently, permit volume) to a unit scale. One can interpret this
convention as Ls is the share of developable land akin to the Saiz (2010) physical geography-based measures. Qs
then represents the share of developable land newly permitted for development in period t.



investors in financial markets, while permit values V;; are not readily discernible from public
data. We justify our focus on Qs rather than V;; as a signal based on the data compilation
efforts we describe in Section 3. From equation (2.2), Qs; aggregates local housing market
investors’ beliefs about local economic fundamentals f(Xs¢), which are not directly observable

to investors in financial markets.

Financial markets. We adopt the standard Grossman and Stiglitz (1980, hereafter GS) setup to
characterize information aggregation in financial markets. There is a risky asset, such as corporate
bonds or equities, that pays an unknown dividend d in period t + 1, where di1 ~ N (d,03).
There is a unit mass of investors j(s) € [0,1] in each locality s who trade the risky asset in
period t at price p;. To resolve the Grossman-Stiglitz paradox, the supply of the risky asset

A is random so that prices are not perfectly informative:
A=m+u, withm>0andu~ N(0,02) (2.6)

where u denotes noise due to either unmodeled noise traders dumping shares into the market or
firms issuing a random number of securities. There is also a riskless asset with a rate r between

t and t + 1. To limit the notational burden, in what follows we suppress the time subscripts.

Investors in the risky asset market have constant absolute risk aversion (CARA) utility over

consumption with coefficient of absolute risk aversion :

—Elexp(=7-¢))]

There is asymmetric information in the risky asset market. A fraction As of investors are informed
and observe a signal about the dividend, and this signal is common to all informed investors
operating in s. The other (1 — A;) fraction do not observe the signal, and are therefore uninformed.
All investors observe the price p. Note at this stage that while information is aggregated at a
local level, the asset market is national, so there is only one price p which clears the market. This
distinction is key for the model’s ability to explain the heterogeneous effects of local housing

markets on asset markets that we find in the data.

Let building permit growth (BPG) g5 serve as this quasi-public signal, aggregated from the
local housing market according to equation (2.5). BPG relates to dividends according to:

gs =d+e;, witheg iid N(0, 0';(5)) (2.7)

where ¢, is independent of d. The idea behind local BPG as a quasi-public signal for future
dividends is that positive swings in permitting activity relative to trend reflect developers’
positive beliefs about a project’s future values given local fundamentals X ; which determine the
project’s probability of success via equation (2.2). For exposition, we assume the ¢, are i.i.d. across
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localities. In Appendix A.3, we present a version of the model which allows for permit signals

gs,t to be correlated across local markets — in which case gs; is drawn from a joint distribution.

A key reason why we define the quasi-public signal in growth rates rather than levels is that
gs has full support despite the fact that Qs must be non-negative and is bounded above by
the local land endowment. To see this, note that the maximum growth rate in local permits
is log(Ls) — log(0) = +o0 and the minimum growth rate is log(0) — log(Ls) = —oo, implying
that g5 follows a standard normal. In contrast, the level of building permits Qs as a quasi-public
signal would instead follow a truncated normal distribution in each locality with two truncation
points at 0 and L. Several authors have shown that extensions of the canonical [GS] paradigm
featuring CARA utility with truncated normality produce the usual demand function with a
mean-variance term plus a correction term for the truncation (Yuan, 2005; Palvolgyi and Venter,
2015). The correction term is a non-linear function of the truncation points, mean, variance, and
risk tolerance.® Hence, the scope for multiple equilibria is more limited by specifying BPG rather

than permit levels as the quasi-public signal in an asymmetric information context.

Noisy Rational Expectations Equilibrium. Under these conditions, we can define a noisy
rational expectations equilibrium (NREE) as a price function p({gs}5_;,u) and set of demand
functions xj. for the informed (I) and uninformed (U) investors j(s) with information set
wj(s) satisfying:

Eld|wjg] = (1 +7)-p
Portfolio optimization: x; = / , jed{l,u 2.8
f p j(s) - Var[d|w]-(s)] jed } (2.8)
S
Market clearing: Z [As -x1(qs, p(gs,u)) + (1 — As) - xu(p(gs, u))] =m+u (2.9)
s=1
No cross-market arbitrage (law of one price): ps = p,Vs (2.10)

Proposition 1. The price function which satisfies the three conditions for a noisy rational expectations
equilibrium is linear in the local signal qs and noise u and follows:

p=¢o(s)+ 4’q<5) (95 + Pu(s) -u), Vs (211)

Moreover, ¢g(s) > 0 and ¢, (s) < 0, regardless of the coefficient of absolute risk aversion vy, so the asset
price loads positively on building permit growth in each locality and negatively on noise.

Proof. We derive the expressions for the coefficients [¢o(s), ¢4(s), ¢u(s)] in Appendix A.1. O

8The penalty term arises because there is a mass of &5 which deliver the same equilibrium asset price, meaning
the uninformed investors” demand function is no longer fully linear. We relegate to Appendix A the derivations for
versions of our model with permit levels as the signal.
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The coefficients [¢o(s), ¢4(s), ¢u(s)] vary by locality through the fraction of informed investors
As and BPG volatility o). This means that even if all areas experienced the same permit growth
rate g5, there would still be heterogeneity in the informativeness of the local BPG signal for asset
prices (and returns). The coefficients in equation (2.11) are functions of the precisions of the
dividend, the signal, and the transformed signal p. Uninformed investors only observe the price,
but in equilibrium this is a transformed version of the local quasi-public signal and noise:

~_ P—¢ols)

_ — g+ us) 2.12
P="g ) o) (212)

The transformed signal based on the price therefore has variance Z?,% = (75( 9T P2(s) - o2

The derived relation between equilibrium asset prices and local housing markets leads to four
main testable implications which we take to the data:

Hypothesis 1: Building permits proxy for local economic fundamentals. This follows from the option
value theory principles underlying the market for building permits. Developers apply for permits
when the project is NPV > 0, and based on (2.2), this is more likely to be true when local
fundamentals Xs¢ deliver a higher probability the project comes to fruition. If there is a large
enough improvement in local fundamentals between periods, then gs:;+1 > 0.

Hypothesis 2: Movements in permit volumes positively predict aggregate asset price and return movements.
It follows from the equilibrium price function and proof to Proposition 1 that dp/dgqs =
$a(s) > 0,Vs.

Hypothesis 3: The sign of comovement between BPG volatility and asset price or total return volatility
is heterogeneous across localities. A related corollary says:

Corollary 1.1 (Comparative Statics). Given the equilibrium price function in equation (2.11) and the
definition of the transformed price signal in (2.12):

1. Let 0y denote the volatility of the equilibrium risky asset price. doy /90y, () has an ambiguous sign,
but is positive for sufficiently small local BPG volatilities o).

2. Normalize the ex ante risky asset price to be p; = 0, so that the total return can be written as

rA = Pis1 + diy1, with variance o? = 0';% + (14 Zcpq(s)) . 0’3. Then 90y /90y (s) has an ambiguous

sign, but is positive for sufficiently small local BPG volatilities oy ).

Proof. We show the full comparative statics with respect to 0, in Appendix A.1. ]
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Corollary 1.1 indicates that we should expect some heterogeneity across locations in the
signs of the loadings of risky asset price and asset return volatility on local BPG volatility.”
Intuitively, adding volatility to an ultra-precise g5 raises price variance because it amplifies the
impact of noise in the risky asset market. Indeed, we will find in our main results of Section 5
that localities with relatively large average BPG volatility (e.g., Connecticut) have low values of
90,/ 0,(s), while states and MSAs with small average BPG volatility (e.g., Georgia) have high
predictability. Probing further why areas differ in equilibrium permits leads us to the final

testable prediction offered by our model.

Hypothesis 4: All else held equal, the precision of BPG as a signal for agqregate asset price movements is
negatively correlated with physical geography and requlatory constraints on local real estate development.
In the baseline version of the model L; is independent of the information structure. We relax
this assumption in Appendix A.4 by endogenizing the construction cost C;,;y1 term from the
profit-maximization problem of a developer who faces a production function with decreasing
returns to scale in local labor inputs. Heterogeneity in local housing supply elasticities manifests
both via Ls; and a “profit wedge” in the developer’s production function arising from local
building restrictions based on regulatory barriers to new construction. This addition to the model
captures the observed negative relationship between building permit activity and the stringency
of local regulations on new housing supply at both the state and sub-state levels (Gyourko et
al., 2008; Gyourko et al., 2021; Bartik et al., 2024).

We give here an intuitive example of what happens when housing supply constraints enter
into the information structure. Consider again a high BPG volatility state like Connecticut and
a low volatility state like Georgia. Connecticut also faces more physical constraints on new
housing development than Georgia; according to the buildable land share measure produced
by Lutz and Sand (2023), Connecticut has Lcr = 0.51 — primarily driven by prior housing
development — and Georgia has Lga = 0.68.1° Suppose the local economies of the two states
experience prolonged booms, leading to an increase in the probability of project success, f(Xs ).
This will result in an expansion of demand for permits in both states, but the constraint on
permit levels in (2.5) is always more likely to bind for CT, thus increasing o, (cr). Informed
investors extract more information from swings in permits in Georgia given that there is a
smaller steady-state inaction region. Hence, BPG volatility will be a more precise signal relative
to noise for states like Georgia than Connecticut.

9We show how to resolve some of this ambiguity in Appendix A.2 by making two adjustments to the model. One
is to feature geography-linked supply noise ¢Z(s) in which supply noise is greater in more populous areas. Another
is to endogenize the information mass by allowing the number of informed traders to fall as permits become noisier.
This latter version can be rationalized by the argument that informed investors would ignore a sufficiently noisy signal

altogether.

10Relative to the earlier undevelopable land share of Saiz (2010), the Lutz and Sand (2023) buildable land measure
uses satellite data to account for existing construction and public spaces. For instance, Florida’s buildable land share
would be higher if not for a large fraction of the state being covered by wetlands unsuitable for housing. We describe
how we construct this measure at the state level in Appendix E.
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Accounting for both physical and regulatory sources of supply restrictions is essential because
our results on the linkages between real estate and financial markets hold longitudinally. Since the
1970s represent an inflection point for the complexity of laws governing new building approvals
(Shertzer et al., 2022), regulatory constraints cannot fully explain the patterns we observe in
the data for earlier financial crises such as the Great Depression. Further, physical and modern
regulatory restrictions are positively correlated. The MSA cross-sectional correlation between
the Saiz (2010) undevelopable land share and the 2006 version of the Wharton Residential
Land Use Regulatory Index is 33%.

3 DATA AND MOTIVATING FACTS

In this section, we describe how we combine several sources of historical building permit counts,
valuations, and residential price indices to construct empirical versions of the forward-looking
housing market measures microfounded in the preceding theoretical framework. Our resulting
database spans over a century (1919 — present) for the entire U.S., all 50 states, and 60 MSAs

with continuous monthly time coverage.

3.1 CoNSTRUCTING LONG-RUN BUILDING PERMIT DATA SERIES

We combine hand collection and deep learning OCR techniques to digitize the data and create
a continuous time series of building permit activity at the state and metropolitan area levels.
We provide further details on data limitations, including the fact that land values are not
capitalized into the permit series, and assumptions needed to splice the series in Appendix B.2;
discuss the technicalities of our OCR data collection in Appendix B.3; and describe the seasonal
adjustment methods in Appendix B.4.

1919-1957 Period. We combine several data sources to build our long-term monthly panel of
building permit values. For the earlier decades, we follow Cortes and Weidenmier (2019) and
use historical building permit data reported in issues of Dun & Bradstreet’s Review—renamed
in 1937 to Dun’s Statistical Review. The real-time data are assembled from building inspector
reports. This allows us to collect the data for a growing number of cities between 1919M1
and 1957M10.!"" The first volume in 1919 had 164 cities, which remained constant until 1923.
After further expansions in the mid-1920s, the sample stabilized at 215 cities included within

each annual volume starting in 1927.

This expansion in the number of cities reporting building permit data reflects the growing
comprehensiveness and scope of the Dun’s publications in capturing the dynamics of urban

"We begin our sample in 1919 rather than earlier years, as the Dun’s publications reported permit counts
sporadically and for a smaller set of series before 1919.
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development during this period. In the end, we obtain a balanced panel of 21 cities from 1919M1
and 65 cities with a complete time series starting from 1927M1. Appendix Figure B.1 shows the
number of cities with permit valuations in the Dun’s data over time.

To ensure the accuracy and reliability of the data in this earlier period, we cross-validate our
Dun’s series with annual data from the Bureau of Labor Statistics (BLS) Construction Reports,
which cover construction occurring over most years between 1920 and 1953. The BLS reports
contain data on the annual total number and valuation of permits, as well as construction costs,
broken down by new residential and non-residential buildings vs. permits for alterations and
repairs. Tables report information covering 1,790 cities from 1940 onward. Survey methodology
used by the BLS informed the later monthly surveys formally taken over from BLS by the Census
Bureau in July 1959 (Census Bureau, 1959). The BLS reports, therefore, provide a valuable check
on the consistency and quality of our primary data sources prior to Census coverage.

1957-1959 Period: Data Limitations. Dun & Bradstreet ceased publication of Dun’s Statistical
Review in 1957 before the Census Survey of Construction and Building Permits Surveys began to
be regularly published. For the short gap covering November 1957 up to and including April
1959, we only observe building permit data for cities in New York. The State of New York
published the Quarterly Summary of Business Statistics, obtained from HathiTrust. We use the
richness of our long-run time series to extrapolate from New York State’s data, applying VARMA

models to interpolate the missing data for locations outside New York (cf. Appendix B).

1959-1987 Period: Historical Census Building Permit Survey. The most comprehensive source
of information on U.S. local building permit activity for newly constructed buildings is
the Census Bureau’s Building Permit Survey (BPS). In conjunction with the Department of
Commerce, the Census has continuously administered and reported data from the BPS each
month starting in May 1959. For each level of geography—State, MSA, and “Place” (i.e., a county,
town, or village)—the BPS includes monthly tables consisting of privately-commissioned permit
quantities and valuations broken down by units in single-family houses, two-family buildings,

three-and-four-family buildings, and five-or-more family buildings.'?

While the modern BPS data are digitized and readily downloadable, there is no repository for
data or tables in the underlying reports prior to 1988. We obtained a subset of the permit tables for
states and MSAs directly from the Economic Indicators Division of the Census Bureau. To source
the place tables and remaining months for the MSAs and states, we either downloaded the reports
from HathiTrust or contacted the network of regional Federal Depository Libraries (FDLs). In
some cases, scanned tables from HathiTrust were too deprecated to apply OCR techniques,

12The BPS stopped listing separate numbers for public permits with the modern version of the survey in 1988, and
in the years before 1988 moved to reporting them only quarterly. We exclude permits associated with public contracts
from our analysis as these do not represent arms-length market transactions.
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and we thus commissioned fresh, high-quality scans of the tables from the Connecticut Federal

Depository Library to limit measurement error in transferring text to data.

We focus on locations within the 48 contiguous states in our analysis, as permitting activity is
generally too lumpy in smaller jurisdictions for us to obtain stable estimates from the GARCH
models we adopt in Section 4 to extract building permit growth (BPG) volatility. Part of this
may be due to measurement error and non-response error from the BPS sampling frame, which
requires the Census to provide imputed estimates that can greatly differ from reported numbers.
Cities in small states like Alaska, Hawaii, Montana, and Nevada are also not included in the

earlier portion of the Dun’s sample.

When the survey started in 1959, there were no separate series with permits aggregated by
state and MSA. The Census later added in May 1960 a new set of reports to the BPS containing
tables by state and MSA. Before May 1960, we obtained counts at the state and MSA level by
aggregating from the place level. We describe the steps involved in this aggregation procedure
and provide a taxonomy for the complete set of series available in the BPS reports in Appendix B.
In the initial 1959 survey year, the Census surveyed over 7,300 places spanning 174 MSAs and
provided totals for 42 MSAs; this expanded to 61 MSAs starting in January 1964. To create a
geographically harmonized series, we aggregate numbers from the place tables to adjust for

changes over time in MSA definitions.

1988-2019 Period: Modern Census Building Permit Survey. We download the modern data
period starting in 1988M1 for the sub-national level from the raw master text file available
through the U.S. Census Bureau website. Updates to the BPS series can be automatically
downloaded with a one-month lag via the Federal Reserve Bank of St. Louis’s FRED API.
We opt to end our estimation sample at 2019M12 to avoid the COVID-19 crisis due to the
unique mismatch between housing demand and supply it created, alongside lockdown and
public health restrictions which may have led to deferred construction (Ghent et al., 2024).
The number of MSAs with permit series in the modern BPS stabilized in 2008, with data for
113 MSAs currently downloadable.

The Census Bureau relies on imputations using historical survey response rates and population
proportionality-based estimates in periods where data from certain places are unavailable.'® In
the modern survey, the Census provides both the raw survey variables and versions obtained
via imputing missing information. We use the imputed series from the modern period to match
conventions of earlier years of BPS data for which we only have the counts inclusive of any

imputation procedures conducted by the Census.'*

BImputations predominantly impact small places accounting for less than 1% of national permitting activity. For
this reason, the place tables are annual for all places in the U.S. and monthly for a subsample of roughly half of all
places. Under the current sampling scheme, the “certainty sample” of places with counts for each month consists of
places with an average of at least 6 or more permits in the last 3 years (Census Bureau, 2022).

14The Census BPS series from the FRED API also include imputed permits.
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3.2 StYyLizED FAcTts aBoUT HisTORICAL LOCAL RESIDENTIAL PERMITS

We plot in Figure 2 seasonally adjusted permit counts per 10,000 inhabitants for total residential
units and single-family units for all 50 states covering the entire span of the Building Permit
Survey. Before scaling by population, we seasonally adjust each building permits series using the
Census X-13 ARIMA-SEATS filter, described in further detail in Appendix B.4. We create similar
figures for our seasonally adjusted Dun’s Review state-level permit value series in Appendix B.1
and plot the raw Census permit counts in Appendix B.2. Scaling permits by population offers a

measure of planned new residential units relative to housing demand in an area.

Several stylized facts emerge from plotting our newly collected permit data, for which we
provide formal statistical evidence in subsequent analyses. First, permits are procyclical and
lead recessions; this is true both in aggregate (as argued by Leamer, 2007; Stock and Watson,
2010), and for particular geographic areas. For example, Florida permits peak 5 months before
the 1973 OPEC recession and lead the Great Recession by almost two years. Our main results
in Section 5 highlight why certain states like Florida predict stock and bond return volatility

across multiple crash episodes.

Second, in most states single-family permit counts per capita peaked in the 1970s. In sunbelt
states permitting continued on trend after the oil crises of the 1970s to meet demand from new
residents. The data also displays a boom in permitting in New Jersey and New York in the
1980s under Edward Koch’s mayorship of New York City, during which zoning restrictions
were relaxed in dense parts of Manhattan in response to the “construction drought of the
1970s."1> Somerville (2002) finds in Canadian permits data from 1972-1997 that 95% of permits
are exercised within three months and 99% of started single-family construction is completed
within 15 months. We update these numbers for the U.S. by isolating permits filed for new
residential construction in the CoreLogic Building Permits data. In every year since 1990, over
80% of started residential buildings have been completed within 12 months of the permit being
issued, with an average unconditional completion rate of 81% over that time. Permits for new
residential units are therefore a valid proxy for new housing supply at one to two-year horizons.
In Appendix E, we describe the CoreLogic data and report statistics about the relationship
between permitting, time-to-build, and housing supply.

Third, there has been a clear collapse in single-family permitting activity since the GFC, which
has only partially rebounded in some states. This collapse and non-recovery is more pronounced
in states with stringent regulatory restrictions on new housing development, such as the high
minimum lot size requirements in New England (Bronin, 2023; Song, 2024). Indeed, we find
in Section 6 that the Wharton Residential Land Use Regulatory Index alone produces a 22%
R? at the state level and 36% R? at the MSA level, and has a negative correlation with local
permits issued in the post-GFC period. Taken together, these facts demonstrate geographically

15See the NYC government’s history of the Midtown Development Project: https://www.nyc.gov/assets/
planning/download/pdf/about/city-planning-history/midtown_zoning.pdf.
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FIGURE 2. Building Permits Per 10,000 Inhabitants in U.S. States, 1961-2019
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(black) and private single-family home permits (red) per 10,000 inhabitants filed in that state for a given year according
relative to state population over six decades. Permit counts exclude those filed for public construction contracts. Series
are seasonally adjusted using the Census X-13 ARIMA-SEATS filter (cf. Appendix B.4). We start the sample at 1961M1,
since 1961 is the first year the survey follows its standard format. Grey-shaded areas indicate NBER-dated recessions.

to the Census Building Permits Survey (1961-2019). The time series shows the evolution of building permit activity
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(black) and private single-family home permits (red) per 10,000 inhabitants filed in that state for a given year according
relative to state population over six decades. Permit counts exclude those filed for public construction contracts. Series
are seasonally adjusted using the Census X-13 ARIMA-SEATS filter (cf. Appendix B.4). We start the sample at 1961M1,
since 1961 is the first year the survey follows its standard format. Grey-shaded areas indicate NBER-dated recessions.

to the Census Building Permits Survey (1961-2019). The time series shows the evolution of building permit activity



heterogeneous changes over time in new housing supply, and, through the lens of our model in
Section 2, heterogeneity in the usefulness of building permits as a signal to financial investors

about the macro-financial outlook.

3.3 BACKGROUND ON LocAL PERMITTING PROCESS

Builders of new residential units in most U.S. jurisdictions are required to receive permit approval
and pay a permit filing fee before construction can begin. Records of permits are retained by a
local Building Department, City Planning Office, Zoning and Code Enforcement Office, or similar
entity. Many of the earliest codes governing new buildings in the U.S. date back to the colonial
era and are predicated on notions of preventing fire hazards or limited damages to neighboring
properties (Oster and Quigley, 1977). Data on features of historical building codes are scarce,
but President Lyndon B. Johnson’s National Commission on Urban Problems review of land use
regulation stated that, as of 1968, over half of all zoning decisions in Connecticut were handed
down since 1958 (American Society of Planning Officials, 1968). This increasing sophistication
of building codes coincides with the expansion of local governments’ legal abilities to regulate

building under the police power clause of the Tenth Amendment.'®

More recently, local governments levy permit fees as a substitute for revenues from property
taxes (Altshuler and Gomez-Ibanez, 1993). Levies on new construction—including permit,
inspection, and certificate of occupancy fees—are referred to as “impact fees,” because
governments tie the fee schedule to the expected strain new development will place on the
jurisdiction’s ability to provide local public goods (e.g., traffic on roads might increase with
new housing). Permit fees in the modern era thus take the form of a Pigouvian tax.

Horton et al. (2024) map the prevalence and burdens imposed by permit fees on new
construction in recent years, documenting that virtually all counties with available permits data
levy fees on permits for new single-family units, yet in the median U.S. county, the amount is
under 1% of forecasted construction costs. Hence, there are transaction costs to permitting, which
are relatively small for the majority of areas, but there is some variation in the cross-section,
with fees above 10% of project costs in the top decile of counties. Transaction costs prevent
indiscriminate permitting that would attenuate the informativeness of BPG, gs:, as a signal to
informed traders in our model of financial markets.

3.4 DEerFINING BUILDING PErRMIT GROWTH

Using our database of permits, we construct empirical analogs to aggregate permit valuations

Vs t, aggregate permit counts Q;:, and permit growth rates gs; in our asymmetric information

16Glaeser et al. (2005) point to several watershed court cases, such as the U.S. Supreme Court case Nectow v. City of
Cambridge (1928) and Southern Burlington County N.A.A.C.P. v. Mount Laurel Township (1975), which prescribed limited
avenues for landowners to prevent local governments from restricting new development on their land.
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model of Section 2. We focus on building permit growth (BPG) rather that levels due to
the non-stationarity of local building permits, confirmed by previous studies using state-level
permits (Stock and Watson, 2010; Strauss, 2013) but also by our own unit root tests applied to
longer time series and finer geographies. We define log local building permit growth (BPG)

based on permit values as:
Us41 = Alog(Viri1) (3.1

N
Vit = Pop X Qs = Z Pi,s,t 3.2)
i=1

where building permit value V;; depends on both the total quantity Q;; of permits issued at time
t in geography s and how each permit i is valued at a price p; s by investors at the time it gets
approved by the local government. Ps; is an index capturing average value per permit. Permit
quantities depend on several factors, including demand for new properties and local supply-side
factors such as the availability of developable land and the stringency of land use regulations.
Our choice of geographic unit s is dictated by data availability over multiple boom-bust cycles
for each test of the four empirical predictions of the model in Section 2.

The fact that land values are not capitalized into extant building permit series is a limitation
of the data. While simple, the option value theory model in Section 2 illustrates that key
information about macroeconomic fundamentals may be occluded by excluding land from the
value of exercising a permit. There are several ways to value permits both at the level of the
property and local market. Valuation methods vary depending on how the data are collected.
Most permit time series attach a value based on versions of the replacement cost method. In
Dun & Bradstreet’s permit data, the valuations include additions, alterations, and repairs, but
not land prices (see, e.g., Dun’s Review, September 1935).

Modern Census data from the Survey of Construction or Building Permits Survey elicit
similar notions of permit value to Dun’s, with two main caveats. One is that there are 12
non-disclosure states that outlaw direct reporting of dollar values tied to real estate transactions,
including permits (Wall Street Journal, 2019).17 Another issue is that not all permits reported
by a local government authority pertain to entirely new builds on vacant land. For example,
some permits might refer to major property remodels where the budget could change over
the project timeframe due to input cost variability.!®

We combat these issues with measuring BPG in valuation terms, v;;,1 by merging in other

series capturing housing values. The Census disaggregates permits series into total quantities

17Current non-disclosure states include Alaska, Idaho, Kansas, Louisiana, Mississippi, Missouri (some counties),
Montana, New Mexico, North Dakota, Texas, Utah, and Wyoming.

1811 their official documentation, the Census Bureau cautions researchers against using their permit value series,
stating: “Because of the nature of the building permit application process, valuations may frequently differ from the true cost of
construction. Any attempt to use these figures for inter-area comparisons of construction volume must, at best, be made cautiously
and with broad reservations.” (Census Bureau, 2022)
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and valuations, meaning that we can observe Qs for all geographic levels beginning from 1959.
We can therefore define BPG purely in terms of changes in quantities via:

Gs+1 = Alog(Qs 1) (3.3)

For all states via the Zillow Home Value Index from 2000 onward and for 20 Case-Shiller MSAs
from 1990 onward, we can inflate up Qs using the relevant price index P;; to obtain V;; and
s+ Importantly, house price indices incorporate the value of structures and land, respectively
denoted B;;; and L;; in our model environment. We then compare our results computed using
gs+ and vs; for the modern Census segment of our data and find that inflating up quantities
by a housing price index has little bearing on our cross-sectional results for predicting financial
market movements. This is unsurprising given that g,; and v; have a correlation of over 99%
across all 50 states from 2000—2019 and across the 20 Case-Shiller MSAs from 1990-2019. Based
on this information and the relative ease with which investors can research and interpret permit
quantities, we consider g5 as our main measure of BPG. We explore alternative deflators for

converting between permit quantities and valuations in Appendix B.6.

3.5 SUPPLEMENTAL DATA SOURCES

To complement our building permit data, we use several additional data sources. For stock
market information, we use the CRSP Stock Database (1926-2019) accessed through WRDS,
including the CRSP/COMPUSTAT merge for firm-level accounting fundamentals. We use the
value-weighted CRSP index throughout our analysis. Our corporate bond market data come from
two sources: the Dow Jones Corporate Bond Total Return Index from Finaeon Global Financial
Data (1915-2019); and issue-level data from SDC Refinitiv (1990-2019). For housing price indices,
we use the S&P Case—Shiller Index (1988-2019) for 20 MSAs and the state-level Zillow Home
Value Index (2000-2019). We also download the underlying property-level microdata from the
Census Survey of Construction (SOC), which consists of a randomly stratified sample of executed
private permits on new residential construction. We use the SOC data to determine the extent
to which building permits translate to finished units.

Previous studies note that housing market indicators like permits might proxy for consumption
or wealth indicators (Ghent and Owyang, 2010). Building permits capture hiring in the
construction sector, which has a direct effect on local job growth and unemployment rates
(Strauss, 2013; Howard et al., 2024). We attempt to isolate the additional signal that permits
provide to informed investors on top of any other observable signs of local economic conditions
by controlling for state and metro area GDP and personal consumption expenditures (PCE)
compiled by the Bureau of Economic Analysis (BEA).!” We download quarterly county and

19The BEA data can be downloaded at https://www.bea.gov/data/by-place-states-territories for states and
at https://www.bea.gov/data/by-place-county-metro-local for MSAs and counties.
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state-level employment statistics from the Quarterly Census of Employment and Wages (QCEW)
produced by the BLS.

In our firm-level tests, we use Dun & Bradstreet’'s DUNS Marketing Identifier (1969-2019)
to match firms to their physical locations. Beyond plant-level locations, D&B provides data on
establishment-level employment and sales, which we use to apportion out each traded firm'’s
exposure to building permit risk across location in our analyses at the individual securities
level. We crosswalk the DUNS id to the gvkey firm identifier in COMPUSTAT by matching the
parent company name strings across the two databases. This crosswalk allows us to obtain a
tirm-level panel with sales and employment-share weighted building permit market exposure
measures matched to balance sheets and returns.

4 EMPIRICAL STRATEGIES

Macro Return Prediction Regressions. We begin by validating our core conjecture that recent
building permit growth positively predicts near-future risky asset returns. To do so, we regress
CRSP total returns r; on lags of seasonally adjusted month-to-month building permit growth
(BPG), as defined in (3.3):

( " p*
BPG /
=P+ O +Y Broriet ) PO A+ oY Xip +e (4.1)
~ 7=1 =1 =1
p
seasonal N ,
dummies autocorrelation U.S. MOM BPG aggregate controls

J; is a set of quarterly or monthly dummies to strip out seasonality.’’ We include t* lags of the
dependent variable volatility and ¢®FC to account for serial autocorrelation.?! Aggregate controls
in X include: the lagged corporate leverage ratio (Schwert, 1989; Cortes and Weidenmier, 2019);
population growth (Mankiw and Weil, 1989; Francke and Korevaar, 2023); Shiller (2015)’s CAPE,
household debt-service coverage ratio (Mian et al., 2017); growth in the industrial production
index; and Manela and Moreira’s (2017) news-implied volatility index (NVIX). To address the
Smets (2007) critique of Leamer (2007) that building permits may simply predict macroeconomic
outcomes due to the sensitivity of residential investment to monetary policy rates, we also
consider the excess CAPE yield relative to the 10-year U.S. Treasury yield.22

2Gince we construct oPPC from seasonally-adjusted permits, further adjustments for seasonality by incorporating
either monthly or quarterly dummies into equation (4.3) has little quantitative impact on our results. In our baseline
specifications we include monthly dummies to account for possible cyclicality in asset return volatility arising from
quarterly earnings announcements.

21We select a lag order of T* = 12 months to obtain comparable estimates to the literature (e.g., Schwert, 1989)
but consider Akaike (AIC) and Bayesian-selected criteria (BIC) T*. We also consider the optimal lag order selected by
allowing it to be asymmetric between ¢ and oB"C (Ozcicek and McMillin, 1999). In all cases we obtain Thic = Tpic = 1.

2230-year fixed rate mortgages, the most common loan type in the postwar period, are indexed to the 10-year U.S.
Treasury rate due to average household tenure in the home.
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Conditional Building Permit Volatility. Our rational disagreement framework shows how
the precision, or inverse volatility, of building permits as a signal of risky cash flows maps
to housing supply elasticities. Following Cortes and Weidenmier (2019), we extract volatility
from the resulting monthly BPG series in equations (3.1) and (3.3) using GARCH models to
compute one-period ahead conditional volatility. We focus on the workhorse GARCH(1,1) model
introduced by Bollerslev (1986), to obtain local BPG volatility o2/ G for a state or MSA s and
BPG measure defined by x5; € {vss, st}

Xst = 00+ 01 X501 + &5, with & ~ N(0, (Uslfth)z)

(4.2)

BPG

O =t a ey Fa2 (0009)7 stoa >0 atar <1

(0’5,
where x,; is BPG as constructed from data on permits issued and proxies for market values of
newly constructed buildings, adjusted to capitalize land values (e.g., via housing price indices)
whenever possible. We estimate (4.2) using quasi-maximum likelihood (QMLE) methods. In
Appendix C we show robustness of our results to using other GARCH models to estimate
BPG conditional volatility, such as GJR-GARCH (Glosten et al., 1993) and exponential GARCH
(Nelson, 1991). In our simulation exercises, for most building permit series and time periods the,
workhorse GARCH model exhibits less parameter instability while attaining similar convergence
rates to analogous GJR-GARCH and E-GARCH specifications.?

As a proof of concept, we plot in Figure 3 the time series of ¢PFC for total private residential
permits and total return volatility for stocks (Panels A and B) and corporate bonds (Panels B
and C). Following Schwert (1989), we define total return volatility 0; as the monthly standard
deviation calculated from daily returns. Conditional BPG volatility spikes within a 6 month
lead relative to the stock and bond markets in 12 out of 15 NBER recessions. BPG and bond
total returns have lower average volatilities following the Savings & Loan Crisis of the late
1980s.2* Stock and Watson (2010) find that the decline in nationwide BPG and real volatility
(i.e., the Great Moderation) coincided with a convergence in mortgage rates across regions.
As we show in Section 5, our finding that BPG volatility predicts financial return volatility
holds longitudinally over the last one-hundred years even conditional on proxies for housing
demand—including the prewar period when mortgage credit was scarce—indicating that BPG

volatility is not merely a proxy for the leverage cycle.

Aggregate Volatility Regressions. Analogous to the return on return regression in (4.1), our
baseline specification for testing for links between asset market fluctuations and building permit

23Further, GARCH(1,1) converges for more building permit series across geographic areas and subperiods than
textbook GJR-GARCH and E-GARCH models.

24 Average BPG volatility declines from 0.083 to 0.073 after the nationwide trend break in 1992M6, with a two-sided
t-stat on the difference of 9.40. We present results from applying Bai and Perron (1998) one-at-a-time break date tests
to the aggregate and local building permit series in Appendix D.1.
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FIGURE 3. Conditional U.S. Aggregate BPG vs. Financial Market Volatility (1919 — 2022)

A. CRSP Stock Return Volatility (1919 — 1957)
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B. CRSP Stock Return Volatility (1961 — 2022)

Notes: The left-hand axis in each panel plots conditional building permit growth volatility o
estimating the GARCH(1,1) model in equation (4.2) over the series of seasonally adjusted total private residential
permits across the entire U.S. Panels A and C use the Dun’s Review sample, spanning 1919M1 — 1957M10, while Panels
B and D use the Census Building Permits Survey, covering 1961M1-2022M12. The right-hand axis in Panels A and B
plots CRSP total return volatility, while the right-hand axis in Panels C and D refers to total return volatility on the
Dow Jones corporate bond index. We compute CRSP and Dow return volatility as the monthly standard deviation
from daily total returns on the value-weighted index. Grey-shaded areas indicate NBER-dated recessions.
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volatility is the following time series regression:

T* T* p*
BPG BPG !
oy = ,BO + 5t + Z ﬁr - Ot—7 + Z ﬁ-[ 0y _ ¢ + 7 - Z Xt—P + & (43)
v =1 =1 =1
P
seasonal
dummies autocorrelation U.S. BPG volatility aggregate controls

where 0; is total return volatility for an asset class (e.g., stock or bond total returns), and USBtP G

denotes one-period conditional volatility for locality s, as obtained via the GARCH model in
(4.2). We follow the same BIC-optimal lag order selection as in our return regressions.

Geographic Cross-Sectional Volatility Regressions. A natural extension of equation (4.3)

involves replacing aggregate BPG volatility (TtBP G on the RHS with local BPG volatility agtp G

to test for heterogeneity in the informativeness of building permit movements across geography:

T T =
BPG BPG /
=P+ & + Z Br- 0t + 2 :Bs,r st Vs Z Xop—p & (44
—~— — — =
=1 =1 p=1
seasonal
dummies . ocorrelation BPG volatility local controls

for locality s

where now the vector of controls X includes local economic factors within geographic unit s,
such as recent population, employment, and GDP growth. To the extent that such local economic
conditions are readily discernible to investors, failing to account for their influence on financial
markets could lead us to potentially ascribe too much predictability to BPG volatility.

Principal Components Analysis: Accounting for Cross-Regional Collinearity. We also
consider versions of (4.4) in which we include a subset of localities s € S in a panel regression
or use principal component analysis (PCA) to account for collinearity across local real estate
markets. We test the hypothesis admitted by our model in Section 2 that B, - will strongly predict
future asset return volatility in areas of the country where building permits form a more precise
signal to investors about the strength of the local economy. Such areas are ones with fewer
regulatory restrictions but more land availability constraints which keep BPG volatility relatively
low, on average. We report the cross-state correlation matrix for BPG in Appendix A.3. Generally,
states like Georgia for which building permits offer a more precise signal of financial markets
have BPG exhibiting a higher average correlation with all other states.

Firm-Level Analysis: Cross-Section of Equity and Bond Volatility. To examine the relationship

between firms” exposure to local construction cycles and their own-securities return volatility, we
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extend our time series analysis in (4.3) and (4.4) to the cross-sections of equities and bonds:

T* T*
] ]
BPG /
Oip =8+ 1+ Y Bir Ojp—r + 3 @je X | Y Whir1-0pr e |+ 0 Xjym1 +ejp (45)
=1 =1 keg S—
firm-level controls
own autocorrelation share-weighted exposure to BPG Vol

where we include autoregressive terms 0j; . and a vector of controls X;; commonly used in the
literature (e.g., size/age bins, leverage ratios, EBITDA, Tobin’s Q). The ¢; ; coefficients capture
how each firm j’s exposure to real estate market risk through its network of operating locations
J predicts its own asset return volatility. We use Dun & Bradstreet’s DUNS Marketing Identifier
data (1969-2019) to construct (lagged) plant-level shares wy;_; based on sales or employment,
resulting in a share-weighted average measure of each firm’s exposure to local BPG risk. This
Bartik-style shock with possibly time-varying weights on BPG volatility exposure allows us to
examine how firms’ connections to local housing cycles through their plant networks affect

their stock or bond return volatility.

5 MAIN Resurts: BPG VorATIiLiTY PREDICTS FINANCIAL CYCLES

According to our theoretical framework in Section 2, there are several channels through which
building permits could be a leading indicator for macroeconomic movements. In this section,
we first present longitudinal results using the full timespan of our data. We then probe possible
channels through the lens of historical episodes to help establish whether our ¢BC factor is
a general predictor of financial boom-bust cycles throughout history regardless of the nature
of risks the economy faces at particular points in time.

5.1 LONGITUDINAL ANALYSIS OF BUILDING PERMITS’ PREDICTIVE POWER

We begin by testing Hypothesis 2 from our theoretical framework — namely that building permit
growth positively predicts near-future stock returns. Table 1 estimates regressions of total
returns on nationwide BPG based on equation (4.1) for the post-1960s Census BPS data. We
validate that this hypothesis holds and is robust to controlling for autocorrelation in returns
and to the inclusion of a large set of macro factors such as past commodity future returns
(CFRI), population growth (PopGrowth), price-earnings ratios (CAPE), yield curve movements
(CAPEYield), industrial production growth (IPGrowth), corporate and household leverage ratios,
and the news-implied VIX (NVIX). Average month-to-month BPG is 40 basis points; however, on
the eve of recessions, there are large swings of between 10-20%. Outside of the Global Financial
Crisis, our results imply that on the eve of a typical recession, 6-month lagged rolling average
drawdowns in BPG predict a 50 basis point drop in aggregate stock market returns. While the

27



results in Table 1 pertain to building permits in the entire U.S., we always estimate pr ¢ >0
if we run a separate set of regressions for each state 5.

Table 2 presents results from estimating the aggregate on aggregate volatility specification
of equation (4.3) with a BIC-optimal lag of 7 = 1. In each specification, we regress total
value-weighted CRSP return volatility or total Dow Jones Corporate Bond return volatlity on
one-month lagged conditional BPG volatility, c2’°. We perform this exercise in Panel A using all
private residential permits to construct BPG according to (3.3), and instead subset to permits for
new single-family home (SFH) units in Panel B. We focus on growth rates in permit quantities
rather than valuations to first establish the predictive power of permits independent of any
assumptions about how to value the permits at the point they are filed. Our sample covers
the entire U.S. over the run of the Census BPS, up to 2019M12.

Our broad conclusion from Table 2 is that over the full period 1960 — 2019, BPG volatility has
strong predictability for both equity return and corporate bond return volatility, even conditional
on a host of macroeconomic factors which might simultaneously drive asset market fluctuations
and investors” appetite for developing real estate. Stock volatility is more predictable around the
Great Recession period but the reverse is true for bonds. Incremental R? is very high for corporate
bonds but weaker for equities over the full sample. The R?> improves to 16% for CRSP around
the GFC period (2000-19), even without including the vector of controls.?® In Appendix D.4, we
show robustness of the results in Table 2 to adding additional controls for commodity price risk

and household mortgage access from monthly loan originations.

Building permits for new SFHs appear less closely linked to equities than to corporate bonds.
The opposite is true for total private residential units, which includes permits for both SFHs and
multi-family housing (MFH) units. The estimated elasticity for equities is roughly 40% greater
in the specifications with the full set of controls when we use this total BPG volatility measure.
From an investor’s perspective, there are tradeoffs to acting on signals from the SFH vs. MFH
market. Income-generating properties behave more like financial assets than single-family homes,
because rental cash flows can be discounted to produce a valuation, whereas single-family
homes are valued in an hedonic fashion to impute the unobserved dividends consumed by
owner-occupiers. New multi-family properties may contain more soft information about local
economies to the extent that they attract institutional investors who can develop units at scale
(Gurun et al., 2023). Larger properties (i.e., those with at least 5 units) are more likely to be highly

levered with floating rate debt (Glancy et al., 2023), leading to more volatility since developers’

25Geveral of our macro control variables are only available at a lower frequency than the monthly permits data.
With month fixed effects included in every specification, the results are virtually identical regardless of whether we
choose a lag order to reflect the frequency at which a low-frequency control variable updates (e.g. include DSCR;_4
instead of DSCR;_; to reflect the quarterly frequency) or linearly interpolate between each updated value.

26Note that since we already seasonally adjust the permits data and there is little monthly seasonality in stock
or bond returns on the aggregate index, almost all of this explanatory power is coming from BPG volatility itself
rather than time fixed effects. For example, regressing post-2000 CRSP return volatility on only a full set of monthly
dummies results in an R? of just 1.6%, with oBPG adding an incremental R? of 14.4%.
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TABLE 1. Regressions of Stock Total Returns on Nationwide U.S. Building Permit Growth (BPG)

) @ @) 4) (@) ©) @) ®) ©)

TCRSP,t—1 0.059 0.048 0.057 0.056 0.050 0.052 0.051 0.063 0.086
(1.331) (1.083) (1.344) (1.321) (1.167) (1.186) (1.160) (1.187) (1.603)
US BPGsrh,t-1 0.055"** 0.057*** 0.057***  0.055"** 0.054*"* 0.054** 0.044~ 0.049*
(2.576) (2.719) (2.720) (2.630) (2.576) (2.591) (1.650) (1.692)
Time sample 1960-2019 1960-2019 1960-2019 1960-2019 1960-2019 1960-2019 1960-2019 1980-2019 1980-2016
Monthly dummies v v’ v v’ v’ v v’ v v
CFRIL;—, v v v v v v v
PopGrowth;—p v’ v v v v’ v v’
CAPE; v
CAPE Yield;—p v’ v v v v
IPGrowth; v’ v’ v’ v
Leverage;—, v’ v v
DSCR;—p v v
NVIX;—, v
N 715 715 715 715 715 715 715 480 434
R? 0.025 0.035 0.036 0.040 0.046 0.049 0.050 0.055 0.068

Notes: The table presents estimates from equation (4.3) relating total returns to lagged single-family home (SFH)
building permit growth (BPG). We include in most specifications a set of controls for other macroeconomic observables
directly related to construction sector expansions, which might in turn drive aggregate stock market performance.
CFRI is the commodity futures return index of Janardanan et al. (2024). CAPE is the cyclically adjusted total return
price-earnings ratio, and CAPE yield is the inverse CAPE ratio less the 10-year Treasury yield, both provided by Shiller
(2015). PopGrowth refers to the annual population growth rate from the Census. IPGrowth is the month-on-month
growth rate in the industrial production index (INDPRO). Leverage is the aggregate corporate leverage ratio based on
firms’” annual filings in COMPUSTAT, computed as the sum of long-term debts (dltt) and debts in current liabilities
(dlc), divided by total stockholders” equity (seq). DSCR is the quarterly household debt service coverage ratio from the
Federal Reserve, defined as household debt service payments as a fraction of disposable income. In the final column,
we add the News Implied Volatility Index (NVIX) of Manela and Moreira (2017). We include a BIC-optimal number
of lags for each specification with control variables, for which we obtain a lag order of p = 1. The time sample varies
depending on the data availability of covariates, with DSCR available starting in 1980, and the NVIX available only up
to 2016. t-statistics obtained from Newey—West standard errors where we select for each specification the minimum
lag order such that the estimator for the covariance matrix is consistent. ***p < 0.01,**p < 0.05,*p < 0.1.
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TABLE 2. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility

A. Total Private Residential Units BPG Volatility

Asset Market: Equities Corporate Bonds
@ @) ®) @) ®) © @) ®) ©) (10)

oBPe 0.058**  0.029***  0.036** 0.030*** 0.107*** 0.069*** 0.035*** 0.030***  0.024*  0.019**

(1.97) (2.75) (2.53) (2.68) (3.58) (4.32) (3.18) (2.59) (1.84) (2.30)
Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v v v v’ v’ v v v’ v’ v’
Lagged asset return vol. v v’ v’ v v v v v
PopGrowth;—, v v’ v v’ v’ v’ v’ v’
Leverage;—p v’ v’ v v v v
DSCR;—p v v v v v v
IP Growth;_p v’ v’ v’ v’ v v
DisasterNVIX;_, v’ v’ v’ v’
N 714 707 479 435 195 714 707 479 435 195
R? 0.049 0.478 0.461 0.470 0.613 0.139 0.358 0.437 0.428 0.541

B. Single-Family Units BPG Volatility
Asset Market: Equities Corporate Bonds
) @ ) @) ©) (6) @) ®) ©) (10)

oBPe 0.033*  0.022*** 0.026** 0.023** 0.063** 0.076"** 0.044*** 0.041*** 0.038*** 0.023***

(1.75) (2.76) (2.55) (2.35) (1.97) (6.05) (4.95) (4.74) (4.00) (3.77)
Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v v v’ v’ v’ v’ v v’ v v’
Lagged asset return vol. v’ v’ v’ v’ v v v v’
PopGrowth;—, v v v’ v’ v’ v’ v v’
Leverage;—p, v’ v’ v’ v v v
DSCR;—, v v v v v v
IP Growth;_p v’ v’ v’ v’ v’ v
DisasterNVIX;—, v’ v’ v’ v’
N 714 707 479 435 195 714 707 479 435 195
R? 0.031 0.476 0.458 0.467 0.594 0.201 0.379 0.454 0.446 0.539

Notes: The table presents estimates from equation (4.3) relating total return volatility to lagged building permit
growth (BPG) volatility. In Panel A we use total private residential permits as the quantity measure Q;;, but
instead use permits attached to single-family units in Panel B. We include in most specifications a set of controls
for other macroeconomic observables directly related to BPG volatility, which might also drive aggregate financial
market volatility. PopGrowth refers to the annual population growth rate from the Census. Leverage is the aggregate
corporate leverage ratio based on firms’ annual filings in COMPUSTAT, computed as the sum of long-term debts
(dltt) and debts in current liabilities (dlc), divided by total stockholders” equity (seq). DSCR is the quarterly household
debt service coverage ratio from the Federal Reserve, defined as household debt service payments as a fraction of
disposable income. IPGrowth is the month-on-month growth rate in the industrial production index (INDPRO). In
some specifications, we add the natural disaster component of the News Implied Volatility Index (NVIX) of Manela
and Moreira (2017). We include a BIC-optimal number of lags for each specification with control variables, for which
we obtain a lag order of p = 1. The time sample varies depending on the data availability of covariates, with DSCR
available starting in 1980, and the NVIX available only up to 2016. t-statistics obtained from Newey-West standard
errors where we select for each specification the minimum lag order such that the estimator for the covariance matrix
is consistent. **p < 0.01,**p < 0.05,*p < 0.1.
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appetites will ebb and flow with interest rate conditions (Glancy and Kurtzman, 2022). Indeed,
the average value of ¢}¢§ for MFH permits is 12.0%, compared to 7.6% for SFH permits.””

However, some of the increased volatility arising from MFH permits may be noise, as it
captures behavioral responses to idiosyncratic local regulatory changes rather than beliefs
about economic fundamentals. There are clear spikes in MFH or total permits filed in months
corresponding to the state’s tax year end date, even after plotting the seasonally adjusted
permit counts in Figure B.3. Developers filing permits to lock in preferential property tax
incentives explains these anomalies.?® Since it is more difficult to separate signal from noise
in the MFH segment of the market, we use SFH BPG volatility as our preferred measure in
empirical tests using the post-1960s data.?’

Figure 4 decomposes the aggregate predictability by state and at short (1-month) vs.
medium-run (12-month) horizons, according to equation (4.4). Each regression in the figure
includes monthly dummies, 022°, and one-month lagged asset return volatility, but no controls.>
A clear picture emerges of a small number of states, particularly Florida and Georgia, driving
the predictability of BPG across both asset markets. This heterogeneity in the loadings is follows
Hypotheses 3 and 4 of our asymmetric information framework, whereby the predictive power of
building permits depends on the extent to which local housing supply constraints bind. The
tigure reinforces the conclusions from Table 2 by showing that BPG volatility is a stronger signal
for the bond market over the 60-year time period in the cross-section of states as well as for
the aggregate U.S. In Appendix D.5, we reproduce the same figure showing the predictability of
BPG volatility conditional on proxies for local housing demand, including state-level corporate

leverage and population growth.

Predictability grows in magnitude as we move from the short-run to the medium-run, with
some non-linearities present when comparing cumulative loadings over the 1-month vs. 6-month

horizons (unpictured). However, due to large confidence interval bands, particularly for stocks,

2’Moreover, due to the high unconditional volatility in multi-family permits, our GARCH specification in (4.2)
applied to multi-family BPG only converges for 31 out of the 50 states plus the aggregate U.S.

2For instance, we observe a large spike in multi-family permits (which is included in the total permits series in
Figure B.3) in California on the eve of Proposition 13, which passed in June 1978 and set property tax assessment
limits indexed to a 1976 fiscal base year value. Similarly, there are large spikes in multi-family permits in New York
City in December 2007 and December 2015 before pre-announced rollbacks of the 421a property tax exemption which
created incentives for developers to file permits to lock in more generous tax abatements (Soltas, 2022).

29From the perspective of building coherent long-run time series, Census total residential permits correspond better
to the composition of permits surveyed by Dun’s Review during the pre-1960s time period.

30In all regressions, we obtain nearly identical loadings on oBPC if we instead interact the autocorrelation return

0y—1 with a set of monthly dummies to account for the seasonality in the predictability of lagged stock and bond
returns (Ogden, 2003; Heston and Sadka, 2008).
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we cannot statistically distinguish the signals offered by most states from each other.3! We show
that our results in Figure 4 are stronger and more precisely estimated for both the entire U.S. and
the cross-section of states—while largely preserving the ordinal ranking of predictability of BPG
volatility across states—when we use GJR-GARCH instead of the more standard GARCH(1,1)
specification in equation (4.2). Appendix C.3 documents that using GJR-GARCH addresses the
skewness of the distribution of monthly building permit growth observations. The extent of
this skewness varies across states and time periods; we fail to reject the null of a symmetric
BPG distribution for the aggregate U.S. in the post-1960s period for either overall residential
permits or SFH permits. We therefore face a tradeoff between the stability and convergence
properties of GARCH(1,1) for smaller states and maintaining the precision of our estimates
for states with large swings in permitting activity.

What explains the stronger predictability of BPG volatility for corporate bonds relative to stock
volatility over the full modern sample time period? One possibility is that bond returns are
systematically more predictable since they are non-callable and offer fixed coupon payments.
We indirectly test the role of cash flow predictability in Appendix D.3 by decomposing CRSP
total returns into the capital gain vs. dividend components (i.e., by taking the difference between
vwretd and the ex-dividend total return index vwretx), computing stock dividend volatility,
and then estimating analogous regressions to those in Table 2. We find that BPG volatility
is a better predictor of dividend volatility, in an R? sense, than total return volatility since
1960. However, the opposite is true in the post-2000s period, during which dividends were
less volatile. Consistent with our Grossman-Stiglitz modeling framework in Section 2, BPG
volatility works well at forecasting dividend volatility, particularly during times when the cash
flow risk component of returns dominates.

5.2 THE GREAT DEPRESSION AND POsSTWAR Boom

The Great Depression is a pivotal episode in macroeconomic and financial history, with stock
market volatility reaching an unprecedented 60% per annum—two to three times higher than
any other period in American financial history (Schwert, 1989). Cortes and Weidenmier (2019)
show that building permit growth volatility and financial leverage help rationalize such high

degrees of volatility in an incremental R-squared sense.

In this subsection, we extend and enhance the findings of Cortes and Weidenmier (2019) in
several ways. Most notably, while Cortes and Weidenmier (2019) focused on Schwert’s (1989)
Depression volatility puzzle period (i.e., 1928-1938), our study spans a much longer timeframe.
Our data cover the period from 1919 to 1957, spanning nearly four decades, including the

Slwe use Newey and West (1987) standard errors in all specifications pictured in the figure and hereafter, as we
find the Newey-West estimator delivers t-statistics which are more conservative, on average, than those obtained
via bootstrapping. We obtain more precisely estimated coefficients if in our GARCH models (4.2) we impose errors
following a t-stat distribution instead of a Gaussian one.
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Roaring Twenties, the Great Depression, World War II, and the early post-war boom. This
expanded dataset allows us to gain statistical power by examining the relationship between
building permit growth volatility and asset return volatility across multiple economic cycles
and regimes. Second, our analysis provides a more comprehensive understanding of this
relationship over time for both stocks and corporate bonds rather than just stocks. Furthermore,
our application of modern Census X-13 ARIMA-SEATS seasonal adjustment methods provides

a robust treatment of seasonality.

Another explanation for the predictive power of building permits in aggregate and in the
geographic cross-section is that local land use regulation ebbs and flows with macroeconomic
sentiment, influencing the success probability f(Xs¢), as well as Lg;.1, through the expected
future cash flows generated by the property. Imposing supply constraints raises the value of
holding permitted land Lg;,1, contributing to price growth during periods of high property
demand (Glaeser et al., 2005).>* In the model of Section 2, we assume local residential supply
restrictions are static. Studying the historical period in which zoning and permitting systems
were less complex (Fischel, 2004; Shertzer et al., 2022) is therefore useful for trying to rule
out shifts in land use constraints as the main driver of the predictive power of our BPG

volatility factor across crisis episodes.

Figure 5 illustrates the predictive power of building permit growth volatility for both stock
(Panel A) and bond (Panel B) return volatility in the U.S. and across different states over the
complete Dun’s Review sample period, 1919 — 1957. We adopt specifications identical to those in
Figure 4. The figure reveals significant heterogeneity in predictability across states, with some
showing strong positive relationships (e.g., Wisconsin, Nebraska, Ohio, Indiana, and Florida)

and others showing negative or insignificant relationships.

Notably, Florida BPG volatility exhibits strong cumulative predictability at the 12-month
horizon for both asset classes, particularly if we re-estimate (4.4) restricting to dates within five
years of the onset of the Great Depression. Narrative evidence points to the colossal magnitude
of the Florida Land Boom of the 1920s, although no land price indices exist (White, 2009, 2014).
Total building permits issued in Miami peaked at $65.7 million in 1925M3 and plummeted
to $1.2 million (both in real 2012 dollars) on the eve of the 1928 Okeechobee Hurricane, the
deadliest in Florida’s history. More than 20 million lots were being developed for sale in Florida
over the boom (Knowlton, 2020, p. x1v), a scale which could have accommodated half of the
entire United States population planning to move to Florida (Calomiris and Jaremski, 2023, p.
2). The Florida land boom was predicated on the development of land made newly accessible
by expansions of railroad networks along the Eastern Seaboard in the early twentieth century
(Turner, 2015, pp. 90-113). Our model predicts that a context like 1920s Florida in which there

32Comparing the earlier version of the Wharton Residential Land Use Regulatory Index from 2006 (Gyourko et al.,
2008) to the 2018 version (Gyourko et al., 2021), there is little change in the ranking of states and 44 CBSAs.
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FIGURE 5. Predictability of Building Permit Growth Volatility for Asset Return Volatility (1919 — 1957)

A. Stocks: 12—-Month Horizon B. Bonds: 12—Month Horizon
United States United States ———
US (Except NY) US (Except NY) —

WI NE

NE OH
OH WI

IN IL I
FL KS E———————————
MI PA e
PA IN I
TN TN I
CT MI I

KS MN —
AL OR I
MN FL I

MT CT —_—
OR WA B —

SC SC —_—
WA MT —_—
WV X —
CO WV g

ND CA

uT AZ

CA CcO

NC ND

X AR

AZ DE

AR LA

KY uT

LA NY

GA KY

ID ID

1A NC

NY GA

DE 1A

OK MO
MD SD
MO OK

SD MD

VA VA

NJ ME

ME NJ

-0.02  -0.01 0.00 0.01 0.02 -0.02 0.01 0.02

Sum of Coefficients: BPG Volatility

Loading [l Negative [l Posiive  Statistical Significance (p < 0.10) - No — Yes

Notes: This figure shows the sum of coefficients for building permit growth (BPG) volatility predicting
stock and bond return volatility over a 12-month horizon, using the sample of permit valuations from
Dun’s Review. We estimate versions of equation (4.3) separately for each state s with 7 = 12 lags of
0BPGs,t and report the sum of the estimated lagged coefficients Y12 Bs,f- The sample period is 1919M1
to 1957M10. Panel A shows results for stock return volatility, while Panel B shows results for bond
return volatility. Results are shown for the United States at the top of each panel, then the United
States excluding New York State, and then individual states. Blue (red) bars indicate positive (negative)
coefficients. Solid error bars represent statistical significance at the 10% level, while dashed lines represent
insignificant coefficients. We truncate the x-axis in Panel A to allow better visualization of the estimates
and their confidence intervals. We plot 90% confidence intervals obtained via standard errors to correct
for autocorrelation and heteroskedasticity, selecting the minimum lag order such that the estimator for the
covariance matrix is consistent (Newey and West, 1987). See Appendix B.1 for details on how we aggregate
the Dun’s Review data into state-level permits series.
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are minimal regulatory restrictions on real estate development is one in which BPG volatility

is a strong predictor of asset market volatility.

Figure 5 also highlights the importance of considering the United States both with and without
New York, demonstrating how a single state with significant economic weight can influence
national-level results. This nuanced approach provides a more comprehensive view of the
relationship between building permit volatility and asset return volatility across the country.
We discuss how we aggregate the Dun’s permits data from cities to states in Appendix B.1. Our
results for the aggregate predictability of BPG volatility in the earlier Dun’s period hold even
if we winsorize permit valuations at the tails within each state before aggregating the series

from cities up to states and then up to the national level.

Analogously to Table 2 for the modern time period, we estimate aggregate BPG volatility
on aggregate return volatility regressions for the Dun’s sample period in Table 3. In line with
Cortes and Weidenmier (2019), Panel A of Table 3 shows that the one-month predictability
of BPG volatility for stock volatility is stronger around the Great Depression era. A novel
finding shown by Panel B is that the strong predictability of BPG is present for both stock and
bond volatility—even conditional on controls for market leverage, population growth, industrial
production growth, and the NVIX (e.g., the war and natural disaster components). Both panels
indicate that the predictability remains quantitatively and qualitatively significant over the full
sample from 1919 to 1957. This suggests that our findings for the modern period are not
specific to recent developments in the U.S. corporate or household lending environment, or
contingent on the definition of BPG volatility.?

5.3 Tuae 2008 GroBAL FiNaNciAL CRISIS

In this section, we find that the information embedded in building permits contains soft
information about the timing of the onset and severity of the Financial Crisis, rather than
simply proxying for a loosening of mortgage credit access for households during that period.
Another reason to study the modern time period is that monthly frequency house price indices
are available for states from the 2000s onward, and for the largest MSAs starting in the late
1980s.* This allows us to capitalize land values into permits at the same frequency as the
permits data. Based on our option value theory framework in Section 2, the expected value
of the exercised permitting option, [V},
land evaluated at its highest and best use. To the extent that construction costs are divorced

|, is a function of the completed building, plus the

3In contrast to the Census Building Permits Survey, Dun’s Review reports building permit valuations rather than
counts, and includes both income-generating properties and single-family homes.

34Price indices from the FHFA are available at all geographies from 1975 onward, but only at quarterly frequency.
The Freddie Mac House Price Index—the underlying data of which forms the basis for the FHFA indices—is available
at monthly frequency for states and CBSAs starting in 1975, but relies on refinancing appraisal values. The need
to match geographies and the sample of single-family homes across datasets guides our choice of indices for the
post-2000 period.
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TABLE 3. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility: Pre-1960s Sample

A. Stock Return Volatility and BPG Volatility (1926 — 1957)

Sample Period: Full Time Period Great Depression Era
@ @ C) @) ®) (6) @) ®) ©) (10)

oBrG 0.036**  0.013**  0.013**  0.013** 0.017*** 0.037** 0.020*** 0.021*** 0.021***  0.020***

(2.52) (2.37) (2.39) (2.41) (2.94) (2.46) (2.85) (3.18) (3.13) (3.00)
Time sample 1926-57 1926-57 1926-57 1926-57 1926-57 1928-38 1928-38 1928-38 1928-38 1928-38
Monthly dummies v v v’ v’ v v v’ v’ v’ v’
Lagged asset return vol. v’ v’ v’ v’ v’ v’ v’ v
PopGrowth; v’ v’ v’ v’ v v v’ v
MktLeverage; v v v v v v’ v’ v’
IPGrowth; v’ v’ v v v v
DisasterNVIX;—, v’ v’ N Ng
WarNVIX;—) v’ NG NG
N 381 381 381 381 381 131 131 131 131 131
R? 0.102 0.618 0.618 0.620 0.631 0.147 0.613 0.614 0.615 0.629

B. Bond Return Volatility and BPG Volatility (1919 — 1957)
Sample Period: Full Time Period Great Depression Era
@ @ ®) @) ®) (6) @) ®) ©) (10)

opre 0.021***  0.009**  0.009** 0.009** 0.011** 0.030*** 0.017** 0.021*** 0.021*** 0.021***

(2.72) (2.11) (2.10) (2.12) (2.54) (3.31) (2.39) (3.02) (2.95) (2.97)
Time sample 1919-57  1925-57 1925-57 1925-57 1925-57 1928-38 1928-38 1928-38 1928-38 1928-38
Monthly dummies v’ v’ v v v’ v v’ v v v
Lagged asset return vol. v’ v v v v v’ v’ v’
PopGrowth; v’ v v v v v’ v v
MktLeverage; v’ v v v v’ v v’ v
IPGrowth;— v’ v’ v’ v’ v’ v’
DisasterNVIX;—, v’ v’ N v’
WarNVIX;—) v’ v’ v’
N 465 393 393 393 393 131 131 131 131 131
R? 0.090 0.515 0.516 0.518 0.525 0.142 0.527 0.541 0.542 0.543

Notes: The table presents estimates from equation (4.3) relating total return volatility to lagged building permit
growth (BPG) volatility over the sample of permit valuations from Dun’s Review. In Panel A we present results using
stock return volatility as the outcome, and instead examine bond return volatility in Panel B. We include in most
specifications a set of controls for other macroeconomic observables directly related to BPG volatility, which might also
drive aggregate financial market volatility and are available historically. PopGrowth refers to the annual population
growth rate from the Census. MktLeverage is the aggregate market leverage ratio (i.e. debt-to-capital ratio) for CRSP
firms from Graham et al. (2015). IPGrowth is the month-on-month growth rate in the industrial production index
(INDPRO). In some specifications, we add the natural disaster and war components of the News Implied Volatility
Index (NVIX) of Manela and Moreira (2017). We include a BIC-optimal number of lags for each specification with
control variables, for which we obtain a lag order of p = 1. The time sample varies depending on the data availability
of covariates; for instance, MktLeverage is available starting in 1925. t-statistics obtained from Newey-West standard
errors where we select for each specification the minimum lag order such that the estimator for the covariance matrix
is consistent. ***p < 0.01,**p < 0.05,*p < 0.1.
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from land values, relying on project cost measures reported with permit filings may reduce the
informativeness of value-based BPG volatility as a signal.

Figure 6 displays the results from estimating 12-month lag versions of equation (4.3) separately
by state and by MSA over the 2000s boom-bust cycle. Panels A and B do this for stock return
volatility while Panels C and D use total bond return volatility as the outcome. For both
bonds and equities the cumulative loadings of Y"*_; Es,r are greater for states which had larger
shares of mortgages classified as subprime during the 2000s boom, as based on the geographic
subprime ranking of Mayer and Pence (2008).® Seven out of the top ten states, as ranked
by their cumulative predictability of future stock market volatility, are also top ten subprime
loan states. Similarly, all 20 MSAs in the Case-Shiller set of MSA-level indices are ranked in
the top 60 by subprime loan activity, and half of these have cumulative loadings which are
statistically significant at the 90% level. The ordering of states and MSAs by their cumulative
loadings is similar across both asset classes.

We isolate via PCA the time series of a “subprime” factor suggested by the results of Figure 6.
This factor appears as the first principal component (PC) in the time series plotted in Figure 7,
and it alone accounts for 24% of the variation in ¢/’ G 36 The subprime factor jumps in lock-step
with several key events of the Great Recession: the Bear Stearns failure (March 2008), the Lehman
Brothers bankruptcy (September 2008), the NBER recession declaration (December 2008), and
the peak volume of foreclosure auction sales in summer 2010 (Fout et al., 2017). Reassuringly,
the subprime factor remains stable and negatively contributes to overall Ugtp ¢ during the 2001
recession, which was widely viewed as the result of the dot-com crash (Kliesen, 2003; Pastor and

Veronesi, 2006), and therefore unrelated to the strength of the real estate sector.

In Table 4 we regress stock market total return and Dow Jones Corporate Bond Index total
return volatility ¢; on one-month lagged PCs.?” For both asset classes, the subprime factor is the
only factor which exhibits a robust and statistically significant relationship with return volatility,
regardless of the inclusion of the other principal components.*®® Importantly, controlling for
growth in mortgage originations does not eliminate the ability of the subprime factor to predict
the financial crisis. This suggests building permits contain soft information about impending

waves of mortgage default rather than simply proxying for overall loose credit conditions.

35Mayer and Pence (2008) define their ranking in terms of the fraction of residential single-family and 2-4 unit
multi-family loans within a geography which are included in a subprime mortgage pool as of 2005.

36The seven components with eigenvalues greater than one together account for 63% of the variation in ¢5F¢. We
also consider methods for selecting factors which are robust to the “weak factor problem” (Kelly and Xiu, 2023).

37Given that the objective of PCA is to extract linearly independent factors, we restrict to one-month lags. Including
additional lags of the contemporaneous PCs would obscure the economic interpretation, because one PC might lead
a combination of the other PCs.

3The first principal component (i.e. our “subprime” factor) has similar time series characteristics whether we run
PCA at the state level, as pictured in Figure 7, or at the MSA level using the Case-Shiller set of MSAs.
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FIGURE 6. 12-Month Predictability of Permit Value Growth Volatility around the Global Financial Crisis
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the sum of the estimated lagged coefficients y_T_, //gs,r- We truncate the y-axis in Panels B and D to allow better
visualization of the estimates and their confidence intervals. Our sample period in each specification is 2000M1 to
2019M12, for which Zillow price indices are available for each state and for each MSA included in the S&P CoreLogic
Case-Shiller home price indices. We use the Zillow single-family residences indices (excluding condos and co-ops) to
conform to the sampling conventions of the Case-Shiller indices. We use permits attached to single-family units as the
quantity measure Qs in (3.2). Panels A and C perform this exercise for the top 20 states according to the Mayer and
Pence (2008) subprime loan share ranking, while Panels B and D perform this exercise for the 20 Case-Shiller MSAs.
We use CRSP stock return volatility as the outcome in the top two panels, and total return volatility of the Dow Jones
Corporate Bond Index in the bottom two panels. We plot 90% confidence intervals obtained via standard errors to
correct for autocorrelation and heteroskedasticity, selecting the minimum lag order such that the estimator for the
covariance matrix is consistent (Newey and West, 1987).
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FIGURE 7. Principal Components of BPG Volatility around the Global Financial Crisis

A. State—Level BPG Volatility
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Notes: The figure plots the time series of principal components of state-level (Panel A) and MSA-level (Panel B)
monthly building permit growth volatility with an eigenvalue greater than unity. Monthly building permit growth
volatility is defined by Ugtp G in equation (4.2). Our sample in Panel A includes the top 20 states in the Mayer and
Pence (2008) ranking of states by their 2005 subprime loan share. We identify the subprime factor even if we pool all
47 states with sufficient permit volumes to estimate our GARCH models. In Panel B, we repeat the exercise with Ugf G

for the 20 Case-Shiller MSAs. Grey-shaded areas indicate NBER-dated recessions.
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TABLE 4. Regressions of Principal Components of Permit Value Growth Volatility on Return Volatility

Asset Market: Equities Corporate Bonds
@ @ ©) @) ®) (6) @) ®)
PCt(i)1 [“subprime” factor]  0.0012***  0.0003** 0.0003** 0.0003**  0.0003***  0.0001***  0.0001***  0.0001***

(2.78) (2.09) (2.06) (2.27) (4.45) (2.51) (2.44) (2.64)
pc?, —0.0003  —0.0003 —0.0001  —0.0001
(1.41) (1.35) (1.54) (1.63)
rc?®, 0.0002 0.0001
(0.82) (1.36)
pc) 0.0001 0.0000
(0.28) (0.55)
pc®) —0.0002 —0.0001
(0.77) (1.47)
pc®) 0.0001 0.0001
(0.53) 1.10
pc”), 0.0003 —0.0001
(0.99) (1.12)
Sample period 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019 2000-2019
Monthly dummies v v’ v’ v v v’ v v
Lagged asset return vol. v v v’ v’ v’ v
AHMDA $ originations v’ v’ v’ v’
R? 0.173 0.563 0.565 0.569 0.202 0.488 0.493 0.504
N 239 239 239 239 239 239 239 239

Notes: The table displays results from estimating regressions of the form in equation (4.3), but with just one lag for
each of the principal components plotted in Figure 7 to avoid collinearity. Columns (1) to (3) use CRSP total stock
return volatility as the outcome, while Columns (4) to (6) use Dow Jones Corporate Bond Index total return volatility as
the outcome. Our sample period is 2000M1 to 2019M12, for which Zillow price indices are available for each state. Each
regression includes a full set of month dummies to strip out seasonality. All columns with the exception of (1) and (5)
include a one-month lag of asset return volatility to account for serial autocorrelation. To control for monthly growth in
mortgage credit demand based on applications, or growth in equilibrium credit supply based on originated mortgages,
we append nationwide totals provided by Neil Bhutta using an aggregated version of the confidential Home Mortgage
Disclosure Act (CHMDA) data, downloadable at: https://sites.google.com/site/neilbhutta/data. We include
both for-purchase and refinancing loan growth rates as separate variables in the regressions.. t-statistics obtained
from Newey-West standard errors where we select the minimum lag order such that the estimator for the covariance
matrix is consistent. **p < 0.01,*p < 0.05,*p < 0.1.
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Our results around the Great Recession period suggest that speculation explains heterogeneity
in the geographic cross-section where corporate exposure to subprime loans or household
leverage does not. Chinco and Mayer (2015) show that speculative house purchases by
out-of-town buyers were the highest in Las Vegas, at 11% of sales, while that city’s subprime
loan rank is only #10. Importantly, in Las Vegas Case-Shiller single-family house prices peaked
in April 2006, well before the October 2008 stock market crash. In contrast, cities like Miami
(subprime loan rank #6), where speculative transactions comprised only 5% of total sales, prices

continued to increase up until the Lehman failure.

After conducting a battery of robustness checks with different lag orders, we find that
around the subprime episode the loading on ¢PPC for Las Vegas (and Nevada) is always
statistically significant at the 99% level, pointing to other determinants Xs; in the valuation
model given by (2.1)-(2.3). Out-of-town speculators from the North buying in cash were
an important source of price momentum in the 1920s Florida boom (Knowlton, 2020, pp.
176-177); only 40% of owner-occupied homes were mortgage-financed in 1920, with much
higher average downpayments than today (Fishback et al., 2013, pp. 10-11). The predictability of
BPG volatility across episodes and in pockets of the geographic cross-section where household
and corporate leverage is relatively unimportant points to mechanisms highlighted in our
theoretical framework, whereby building permits summarize investors’ beliefs about local

economic fundamentals in a way that is not perfectly collinear with build-ups in credit.

To offer further evidence of the mechanisms through which fluctuations in local permitting
activity influence financial markets, we show that firms differentially exposed to BPG volatility
around the Great Recession based on the location of their operations experience greater
fluctuations in their returns. We estimate the shift-share version of our specification at the
individual stock level from equation (4.5) and report the results in Table 5. The thought
experiment underlying this specification is to compare monthly return volatility of firms with a
network of operations in local markets which have larger vs. smaller recent changes in residential
permits filed. To measure each stock’s exposure, we take a weighted average of state-level
BPG volatility, O'I%P C = YiesWkir1- U,fffr, for firm j in month f. We use ex ante notions
of firm state-level locations k for the sales or employment-based weights wy;_,_; to account
for the possibility that firms may shift their operations to less-exposed parts of the country
due to either supply chain risks or reduction in local demand picked up at high frequency
by oBPG (Giroud and Mueller, 2019).

Table 5 documents that firms physically located in markets with sharper jumps in permitting
activity in recent months experience greater own-stock return volatility; this is true regardless
of whether we use employment or sales-based weights to apportion firms” BPG risk across
locations. While we lack data on firm locations prior to 1989, over the last three decades, this
relationship between BPG volatility and return volatility is driven by events around the Global
Financial Crisis, as shown by columns (5) and (9), which restrict to a tighter window around

2008. The relationship is robust to autocorrelation in returns, seasonality, and ex ante controls for
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TABLE 5. Predictability of BPG Volatility in the Cross-Section of Equities

1) @ (©) 4) (@) (6) @) ®) (&)

it 0.0046**  0.0029**  0.0031**  0.0019*  0.0048**
(2.12) (2.26) (2.36) (1.70) (2.08)

Y2, aﬁﬁ‘i 0.0079**  0.0057**  0.0062***  0.0100**
(2.29) (2.04) (2.71) (2.43)

Time sample 1989-2019  1989-2019 1989-2019 1989-2019 2000-2019 1989-2019 1989-2019 1989-2019 2000-2019

Share weights wy Emp Emp Emp Sales Emp Emp Emp Sales Emp

Monthly dummies v’ v v’ v v v’ v’ v v

Firm FEs v’ v’ v’ v’ v’ v’ v’ v’ v’

Lagged asset return vol. v’ v’ v v v v’ v

Firm controls v’ v v v v v’

# of firms 2,067 2,066 1,865 1,865 1,280 1,865 1,713 1,713 1,174

N 157,040 156,907 135,808 135,808 73,832 132,342 117,345 117,345 65,348

Adj. R? 0.31 0.40 0.43 0.43 0.35 0.33 0.42 0.42 0.35

Notes: The table displays results from estimating regressions of the form in equation (4.4), where the outcome
in each regression is total return volatility for a stock associated with company j appearing in the matched
CRSP/COMPUSTAT/DnB sample described in Section 3.5. We restrict attention to post-1989 DnB observations, since
the number of firms included in the dataset stabilizes in that year. Columns (4) and (8) use shares of sales across states
within each plant’s network, while all other columns use employment shares. All columns with the exception of (1)
and (6) include a one-month lag of asset return volatility to account for autocorrelation. The vector of firm controls
includes deciles of firm age based on the listing year and balance sheet size, and one-year lags of EBITDA, Tobin’s
Q, and the leverage ratio. We follow standard procedures in the corporate finance literature to construct EBITDA, the
Q ratio, and the leverage ratio from COMPUSTAT balance sheet items, winsorizing all items at +5 x IQR. t-statistics
obtained from robust standard errors clustered by firm in parentheses. Clustering standard errors at the stock level
results in more conservative (i.e. wider) confidence intervals. ***p < 0.01,*p < 0.05,*p < 0.1.

corporate fundamentals, including firm size, age, EBITDA, Tobin’s Q, and the leverage ratio. The
pass-through of building risk to return volatility is cumulative over longer time horizons, with
the elasticity doubling from the one-month to the twelve-month horizon of BPG risk exposure.
Overall, examining the stock cross-section points to corrections in building activity as a harbinger
of decline in local demand for a firm’s products. When aggregated up, individual firms” exposure
to future declines in local demand translate to volatility in the overall stock market.

6 DiscussioN: WHY Do LocAr BuiLDING PeErRMITS MATTER FOR
FINANCIAL MARKET FLUCTUATIONS?

Our results demonstrate that fluctuations in local building permit quantities predict stock and
bond return movements at short and medium-run horizons both in terms of elasticities and
incremental R-squared. This finding persists across recession episodes, including during time
periods when credit markets were less integrated and mortgages were less common or required
households to make large downpayments. Further, the aggregate predictability of building
permit growth (BPG) volatility holds conditional on measures of corporate and household
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leverage and debt service ratios. Hence, the predictability of BPG volatility for asset market
fluctuations arises independently of the credit cycle documented in the literature (e.g., Schularick
and Taylor, 2012; Jorda et al., 2013; Miiller and Verner, 2023).

Our noisy rational expectations framework argues that BPG volatility should predict stock
and bond return movements because it encapsulates real estate investors’ beliefs about local
fundamentals which may be otherwise difficult for investors in risky asset markets to fully
observe at high frequency. For instance, state-level employment statistics from the Bureau of
Economic Analysis (BEA) are available at the quarterly frequency starting in 2018, yet only
at the annual frequency prior to 2018. Moreover, the data are released with lags as long as
a year and often revised in between release dates, indicating possible data quality issues as
local government offices report information in a staggered fashion. The Quarterly Census of
Employment and Wages (QCEW) produced by the BLS is subject to preliminary release lags of
five months after the end of a quarter.® Similarly, corporate investment rates, while forward
looking, can only be constructed at the quarterly frequency using Form 10-Q releases, which

firms release with lags of up to 45 days.

One threat to this interpretation is that local BPG volatility proxies for risks to corporate
assets and/or physical operations. This could be the case if, for example, natural hazards or
the potential outbreak of conflict result in a shutdown of building or reallocation of resources
from private towards public objectives. At an aggregate level, sources of physical risk to firms’
operations are contained within components of the NVIX of Manela and Moreira (2017), and the

aggregate predictability of BPG volatility remains intact conditional on these components.

Regulatory reforms or political upheavals are likely too slow moving to be able to explain
the predictive power of permit activity in our one-hundred year time series. The Wharton
Residential Land Use Regulatory Index (WRLURI), which is a survey-based measure of local
political constraints developers might face in seeking permits for new construction, has changed
little between the first version produced in 2006 (Gyourko et al., 2008) and the 2018 update
(Gyourko et al., 2021); there is virtually no change in the ranking of states and 44 CBSAs included
in the Wharton survey panel. Similarly, Ganong and Shoag (2017) compute the total annual
number of per capita court cases mentioning the phrase “land use" from 1940 to 2010. This
measure of regulatory stringency exhibits a high degree of autocorrelation in the post-1960s
period, with the cross-decade correlation in the ranking of states based on per capita land

use court cases steadily increasing over time.

As our theoretical framework predicts, the signal-to-noise ratio of local BPG volatility is related
to local constraints on real estate development. Intuitively, if constraints on the number of new
permits are binding in jurisdiction s, then the signal g,; = AlogQs; will be right-censored,
leading to many periods of negative or near-zero growth in permitting. Without conditioning
on any other observable information about the path of economic fundamentals in s, this reduces

393ee the QCEW release calendar over the last decade: https://www.bls.gov/cew/release-calendar.htm.
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FIGURE 8. Correlation between Stringency of Land Use Regulations and Cumulative Permit Volume
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Notes: Each panel in the figure shows the relation between the Wharton Residential Land Use Regulatory Index
(WRLURI) on the x-axis and cumulative single-family home (SFH) building permits per capita issued during the
post-GFC recovery from 2010M1 to 2019M12. We scale each building permit series by 2010 decennial Census
population, downloaded from IPUMS. We normalize both variables to z-scores such that the trendline slope in each
plot represents the cross-sectional correlation. Panel A tabulates the data at the state-level, while Panel B tabulates at
the MSA level. We downloaded the state and MSA-level WRLURI from Tables 10 and 11 of Gyourko et al. (2008). Of
the 47 MSAs with a WRLURI value, we include the 35 MSAs with available data on permits from the Census BPS.

the informativeness of BPG in s as a signal to investors, since it becomes more difficult to know
whether developers forecast reduced economic activity in s or if they would otherwise invest

in s but are unable to, and therefore decide to develop elsewhere.

To test this intuition, we use the first edition of the WRLURI, as the literature lacks a
comprehensive measure of local constraints on housing development going back further in time.
Figure 8 shows a strong negative correlation across states and MSAs between an area’s regulatory
stringency, as measured by the first Wharton Index, and per capita permit issuance during the
post-Great Recession boom from 2010 to 2019. The resulting correlation of the precision (inverse
standard error) on the one-month lagged loadings on ¢2”C plotted in Figure 4 for stocks with the
WRLURI is —17%; for bonds, this same correlation is —22%. For the precision on the cumulative

12-month lagged loadings the correlations are —19% for stocks and —21% for bonds.

Bartik et al. (2024) show that the first and second principal components in their more recent
generative Al-based measure of the stringency of local land use regulation—corresponding to
regulatory complexity and exclusionary zoning (e.g., minimum lot sizes), respectively—are also
strongly negatively correlated with average residential permits filed at the municipality level in
the Census BPS during 2019 to 2023. This is true despite the fact that the WRLURI and generative
Al-based index have 33% correlation for the first PC but only 11% for the first PC when computed
against the overall Wharton Index. In Appendix E, we compare permit completion rates across
states using the permit panel microdata from CoreLogic Building Permits; completion rates are
lower in states facing more constraints on new building according to both types of regulatory
indices as well as the buildable land share measure of Lutz and Sand (2023).
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FIGURE 9. Recent Permitting Activity in Top Cities for Work-From-Home Migration
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Notes: Each panel plots for a metropolitan statistical area (MSA) seasonally adjusted residential permits from the
Census Building Permit Survey (left-hand y-axis) against the seasonally adjusted Zillow Home Value Index for
the mid-tercile of the price distribution of single-family homes (right-hand y-axis). We restrict the time period to
2015M1-2024M10 to focus on market corrections from net migration flows of work-from-home residents. Each of the
cities listed experienced large net migration of remote workers based on American Community Survey data, with
cities ordered by their rank in terms absolute net migration during the period 2020-2021.
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In our specifications the predictive power of BPG volatility holds conditional on past local
population growth. This is important to the extent that permitting may reflect developers
responding to realized rather than forecasted demand for new housing units. In U.S. historical
booms, uncertainty about future demand stemming from the discovery of new territory results in
over-development and subsequent housing busts (Glaeser, 2013), even without overly optimistic
beliefs. Overbuilding risk is exemplified by recent reversals in house prices and rents in markets
like Austin, Texas (Wall Street Journal, 2024), which were initially major beneficiaries of migration
induced by the work-from-home boom. In Figure 9, we show that collapses in seasonally adjusted
residential permit volume in the latter half of 2022 precede similar dips in house prices among
cities which initially saw an influx of digital nomads, as mobile workers began to leave these cities
amid waning COVID-19 incidence and the rollout of return-to-office policies (Flynn et al., 2024).4°

Finally, by examining the predictability of permitting activity, we focus on the very initial
stage of housing development. A possible source of uncertainty captured by our BPG factor
is uncertainty about the time between exercising of the option to build and the completion of
housing units. Time-to-plan lags in commercial real estate are long and variable across location,
averaging 1.5 years (Glancy et al., 2024), a finding we replicate for multi-family units. Gabriel
and Kung (2024) show in project approval microdata for Los Angeles that lengthy approval
times for new housing stifle housing supply. Consistent with those studies, we uncover a
cross-sectional pattern of low-BPG areas having greater predictability for financial volatility,
as well as more relaxed regulatory constraints on new building and reduced lags between
residential permitting and project completion.

7 CONCLUSION

We provide evidence that housing market activity, as measured by building permit growth (BPG)
volatility, strongly predicts future asset market volatility. By constructing a novel dataset of U.S.
historical local building permits from 1919 to 2019, we demonstrate that BPG volatility forecasts
stock and corporate bond market volatility, even after controlling for various factors such as
leverage ratios, natural disaster risk, and macroeconomic conditions. We find this predictive
power is particularly pronounced in more housing supply elastic regions, indicating that the
housing market’s influence on financial markets varies geographically. Our analysis also reveals
that during specific events like the Great Recession, BPG volatility in areas with high subprime

mortgage exposure exhibited stronger predictability for asset market volatility.

Our research contributes significantly to understanding the relationship between housing and
financial markets, introducing BPG volatility as a new monthly factor for forecasting stock and

#0Qualitatively similar patterns showing a predictable dip in prices emerge if we replace the Zillow Home Value
Index in Figure 9 with the Zillow Observed Rent Index (ZORI). Each of the cities pictured also ranks highly in terms
of net migration flows based on tax filers (Berube, 2024).
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corporate bond returns. We highlight the risk of overbuilding, showing how uncertainty about
future economic conditions captured by building permit volatility often results in excessive
development and subsequent housing busts. This insight offers valuable implications for
macroprudential policy, suggesting that policymakers should consider measures tailored towards
property developers to prevent runaway housing market booms. By providing a theoretical
framework that explains heterogeneity in the informativeness of building permits as a signal to
informed traders and creating a comprehensive longitudinal database of local permits, we open

new avenues for future research on local housing supply and its impact on financial markets.
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A  THEORETICAL FRAMEWORK: DERIVATIONS AND EXTENSIONS

In this appendix, we provide proofs for the key propositions in our theoretical setup in
Section 2, which embeds the option value theory of real estate development into the canonical
Grossman and Stiglitz (1980) framework. We then offer two extensions: one where we allow
signals based on local building permit growth, gs, to be correlated across regions, and a
second where we endogenize construction costs while incorporating ad valorem permit fees
and regulatory compliance costs.

A.1 MobEeL Proors
Proor or ProrosiTtioN 1

Step 1 (linearity). Because (d, {gs}, 1) are jointly Gaussian and all investors have CARA utility,
posterior means and variances are linear/constant functions of the sufficient statistics they
observe. With any conjectured measurable price p, informed investors s observe (g;, p) and the
uninformed observed p. Under joint normality, optimal demands are linear in the posterior mean
of d and in price. Hence, aggregate demand is affine in ({gs}, u, p). With market clearing holding
in each locality, the unique solution for p must therefore be affine in the primitive shocks.
There then exist coefficients «, {Bs}, « such that:

p=a+) Pr-gitr-u (A1)
keS

Re-writing this identity relative to a particular locality s yields:

p= <a+25k-qk> + B (95 +x/Bsu) (A2)
i PXSEYE]

$o(s)

which is the stated form in the proposition. Here ¢y(s) collects the effects of other localities’
signals.

Step 2 (sign of the loading on g;). Let x;(s) and x(;(s) be the respective informed and uninformed
demands in locality s. With CARA-normal preferences,

e Bld|wjs] — (1 +7)-p
j(s) v - Var[d|wj)]

, je{Lu}

Holding p fixed, 0E[d|g;s]/9dqs > 0 and 0E[d|p]|/9qs > 0 (the price carries the signal), so aggregate
demand D(p, {qx}) = ¥ <)\s ~xp(s) + (1= Ag) - xu(s)> satisfies dD/dqs. The aggregate market
clearing condition then implies:

F(p {qx}t,u) := D(p,{qx}) — (m+u) =0
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By the implicit function theorem,

dp _ dF/dqs _ 9D/dys
dgs  OoF/dp  9D/op

Each individual demand is strictly decreasing in price, hence 0D /dp < 0. Therefore dp/dgs > 0.
Noting that ¢,(s) = dp/dgs based on equation (A.2) shows that ¢,(s) > 0.

Equivalently, we can write the slopes of the aggregate demand curve explicitly:

oD 1 -

aiqs:;' </\S-Tq(s)—|—(l—/\s)-’fp(5)) >0 (A.3)

?)D - 1+ 2 <,\k(rd+rq(k)) + (1 —/\k)(Td+%p(k))) <0 (A.4)
p T ks

where 14, 7,(s), T, (s) are the precisions for the dividend, local building permit growth, and the
transformed price signal (2.12), respectively. This shows that the positive effect of an increase in
building permit growth on risky asset prices does not depend on risk aversion 7.

Step 3 (sign of the loading on supply noise u). Again applying the implicit function theorem:

op  dF/ou 1
3u~ aFjap _ aDjap (A.5)

where the sign follows from (A.4). In the local representation of p = ¢ (s) + ¢4 (s) - (9s + Ppu(s) - u)
we have dp/du = ¢(s) - ¢u(s). Because ¢, > 0, this implies ¢, (s) < 0. This establishes that the
stated affine form and sign restrictions hold independently of risk aversion 7.

Step 4 (closed-form pricing coefficients). For shorthand, define the aggregate informed
“precision mass" Tp and associated moments as:

To =) wis - 1(s) A=) =ws- A HQEZwEAg-Tq(s)
S S S

where w; refers to the population or market weight of investors in located in s. Hg can be
interpreted as the dispersion-adjusted idiosyncratic noise from locality signals inside price, while
A is the total mass of informed investors across areas.

Let 7, denote the precision that the price contributes about d. In equilibrium, this object
is equivalent to:

2
75

= = A6
= o (A6)

which follows from the linear-Gaussian filtering implied by the definition of the noisy rational
expectation equilibrium in equations (2.8)—(2.12). Define market depth Dy as:

_R(U+Q+Q—Ayy)

(1-A)7p
T

Dy

(A7)

1+
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Then we can write the loadings on each locality’s signal g as:

_ wsAsTy(s) wsAsTy(s) <TQ +(1- A)Tp>

Bs D = (A.8)
0 R-To(a+To+(1-A)T)
We can similarly write the loading on noise in the aggregate pricing function (A.1) as:
'y(TQ +(1- A)Tp>
K = —Dl = - (A.9)
0 RTo(u+To+(1-A)g)
Hence, we have solved for the coefficients for the conjectured local pricing function:
K
‘Pq (S) = ﬂs (,bu (S) 77 (A.lO)

- Bs - _ws/\qu(s)

Note that ¢, (s) only depends on the local information mass. Better informed trading in s makes
the price-revealed signal p = s + ¢ (s) - u less contaminated by supply noise.
To close the system, we can solve for the precision of p as:

;i: (S) — wg)‘qu(S)z
g wiAZTy(s) + 7?0y

(A.11)

CorRoOLLARY 1.1 COMPARATIVE STATICS

We prove that the sign of the slope estimates in regressions of price ¢, or return volatility o;
on BPG volatility o,(s) is generally ambiguous and isolate parameter spaces where the sign
is either predicted to be positive or negative. First, note that the sign will be preserved if we
consider variances instead of volatilities. This allows us to write the derivatives in closed form
in terms of signal precisions, using the notation in the preceding proofs. As shorthand, denote
ms = ws - A; the number of informed investors in locality s.

Note also that we can rewrite the coefficients defining the linear price equilibrium as:
Bs = ¢ - msTy(s) K= —7-¢

To+ (1—A)7

ith c =
T ) Totm+ To + (1- A)g)

and the price precision for dividends 7, defined as in (A.6). Using only these objects, we can
then simplify the price and return variance to:

(75 = (Hg +7%02) + o3 (c- Tg)? (A.12)
07 =05 +0g- (1+2c-Tg) (A.13)

These two identities follow from inserting the previous definitions for Bs and x into the
aggregate price equation in (A.1).
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The first comparative static then yields:

902 2(ms + (1= AT, !
P_ 2. (ms + ( )%) — L (A.14)
a7 (s) Pl (To+ A -Mp)(u+To+(1-A)1)  7(1+057)
) 2m,T mITh
with 7, = — Ms7Q = Q (A.15)

~oy(s) Hg+1%02  (Ho+ 7202)?

The sign of (A.14) is generally ambiguous. Both terms are positive functions of 7,. Depending

on how large supply noise 7?02 is relative to the information mass Hp, 7, changes, which
can flip the sign.

To illustrate this, we examine several edge cases and discuss the relevance of each vis-a-vis
our empirical results.

1. Suppose we take the limit of an extremely precise local signal 0;(s) — 0, or 7;(s) — 0. In
this scenario we need to further distinguish between two cases. If the informational mass
dominates price precision, Hy > 7?02 then 1, ~ Té/ Hg grows linearly with 7,(s), the
second (negative) term in (A.14) dominates at the margin, leading to:

a0, 0 Rl 0 ) 0
3%,(5) >0 = 302 (s) < O near o, (s) =

If supply noise dominates price precision, or v?0? > Hg, then 7, ~ Té /(7v?02) grows
quadratically with 7,(s). In this regime the first positive term in (A.14) dominates, and:

Cl 0 Cles 0 5 0
3%(5) <0 = m > 0 near o, (s) =

That is, adding noise to an ultra-precise g; raises price variance because it amplifies the
impact of supply noise in equilibrium. The second of these two cases accords with what we
find in the data, suggesting that supply noise is a strong force.

2. Alternatively, suppose we take the limit of a very noisy local signal 0;(s) — oo, or 7,(s) —
0. In this case Bs = cmsrq(s) — 0, while x = —v - ¢ and the other B barely move. In this
limit (7'?,/ 0'3(5) > 0. In other words, making an already poor signal even noisier raises the
price’s exposure to noise (the small decline in the direct IB?O’,?(S) term is dominated by the
equilibrium reweighting towards noise.

A.2 SOURCES OF CROSS-STATE HETEROGENEITY IN THE COMPARATIVE STATICS

Given that states with lower 0‘5(5) tend to yield better return and volatility prediction, the
parameter space described in the first case of Corollary 1.1 is the empirically relevant one. We
propose two extensions of the model to bring it closer to the data and derive the new comparative
statics. We formalize the conclusions here as two additional propositions.

Proposition 2 (Geography-Linked Supply Noise). Keeping all features of the baseline model intact,

redefine the risky asset supply shock as u = }_; 0; - u; with u; N (0, Ufl,j) for locations j # s. Then the
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equilibrium is still linear and defined by:

p=a+) Bi-qi+ ) ki-u with «=—7y-ch
jES jeS

Further, there exist thresholds (6, (s),0,(s)) such that:

a;
oz (s

Vo0 orr > 0p(s) - Hy =

_ d0?
’yz(fieff 2 Gr(S) . HQ — FES) >0
q

2 R 2 2 . . . .
where o7, , rf o= 1070y, ; is the total price-noise variance.

Proof. First, note that all statements and expressions in the previous version of the model hold
with 02, £ instead of 02. Therefore, going forward, we replace o2 with 02, £ N all expressions in
the preceding version of the model.

Fix {my, 1 (k) }xzs, Ta > 0,7 > 0,02 > 0. Evaluate the derivatives at a point where ag(s) is small

enough such that 7?02 > 6 - Hp for some 6 > 1. When this condition holds, supply noise locally
dominates information mass in H = Hg + 7?02. Then price thresholds satisfying the statement
can be derived as:

= ms'TQ - - 0—5
0, =1+ ———= 0, =0,-(1
p + Hy r p ( +Td+TQ

With 6 > 9p, equation (A.15) reduces to T}’q ~ 2msTo/H, and (A.14) has a negative sign. To see
this, note that the c>m? term is second order in 1/6. Thus, Ba;%/ 07y(s) < 0 and 80%/ aag(s) > 0.

For returns, the same logic holds, but the larger threshold 6, ensures the negative term from
d0;/97y(s) dominates.

The thresholds depend only on readily computed objects at the evaluation point (Tg, Hp).
Hence, when we observe the “positive near small ¢;" pattern in a group of states, the model
attributes this to regions where asset supply noise dominates. These are states with a smaller
mass of informed investors m;. In this version of the model, cross-state variation in the sign is
therefore driven by information-side differences and not by state-specific supply noise. ]

Proposition 3 (Endogenous Informative Mass). Keeping all features of the baseline model intact,
suppose now the informed investor mass at locality s is increasing in the precision of building permits
7,(8), holding fixed m; for all j # s. Hence, m{(7;) > 0. Then Bag/arq(s) > 0 and 907/ 14(s) > 0 for
sufficiently small o7 (s).

Proof. Define the elasticity of the number informed investors with respect to signal precision:

s 1= 1y(s) - mg(75)/ms > 0. For shorthand, denote x; := ms - To/H. Then 7, = 97,/97(s)
reduces to:

T = %~ms(2(l+1j)5) —xs(1+2¢s)) (A.16)
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Since TI’J defines the size of the positive-slope region in equation (A.14), based on (A.16), as s
increases, the parameter space where 8(75/ d7y(s) is positive shrinks. To see this, note that:

21+ ¢s)

T, >0 <= 2(14+¢s) > x5(1+2¢hs) <= x5 < 1+ 20,

€ (1,2]

Note in the baseline case where 1; = 0, the threshold is x; < 2. With endogenize information,
the threshold falls towards x; < 1 as s — co. Making m; sensitive to precision makes it harder
to keep T, positive, because Hg grows faster (more concentration of informed investors) as 7,(s)
rises. We can derive a similar conservative lower bound 0, as in Proposition 2, which reprises the
supply-noise vs. information-mass tradeoff:

22
Y Ou mSTQ
0, := — =
s HQ Xs HQ ) (1 +95)
2(1 T 1+2
s (+lp5) S 95>m5 Q +lp5 _
1+ 24, Ho  2(1+1s)

An endogenous information mass raises the required supply-noise dominance Hy > %072
required to get the “positive for small qu(s)” comparative static. O

A.3 ALLOWING SIGNALS TO BE CORRELATED ACROSS GEOGRAPHY

We retain the same setup as in the baseline version of the GS framework in Section 2, except
now the BPG signal follows:

g=1d+e withe~N(0,%) (A.17)

with a full S x § covariance matrix X, which need not be diagonal. Let the informed mass in state
s be ms 1= ws - A;; M := diag(my,...,mgs); and A := Y  m,. Denote prior precision 7; = 1/(7%.
As before, we conjecture a linear noisy rational expectation equilibrium price:

p=a+bgtx-u (A.18)
Define matrix analogs to the scalar precision masses:
v:=MZ 1 T:=1"v1"MZ; 11 H:=0v'Xwo

where v is an § x 1 vector. Now T is the aggregate precision mass that can reach the price
when permit signals are correlated across areas. H is the dispersion-adjusted idiosyncratic noise
injected through signals. H collapses to Hy = ¥, w?A21,(s) when X is diagonal.

We can now derive closed-form coefficients corresponding to the standard CARA-normal linear
pricing equilibrium, but now with this richer information structure. First, the price precision
(i.e., what prices tell us about dividends) takes the form:

TZ

= —— A19
T H+ 4202 (A.19)
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The slope vector on the state signals and the supply-noise loading is a constant:

T+(1-A
c= * )Tp >0

(1 +r)T<Td LT (1— A)Tp)

Then the vector of coefficients defining the aggregate equilibrium in (A.18) is b = ¢ - v, and

k = — - c. The coefficients in the state-level pricing functions are then:
Y
—b — /b — — - __r
¢q(s) = bs ¢u(s) =x/bs v/ 0s BWEI <0

We can also derive the incremental precision from the price (i.e., the precision of the transformed
signal p) beyond observing gs:
. (b71)? T2
Ty(s) = = A.20
P( ) Vﬂi’(bTS + KM’SS) <(Z€v)s) ( )
H + 202 —

a3 (s)

which collapses to the baseline case in (A.11) when X, is diagonal.

In practice, X, is not diagonal, although building permit growth is only weakly correlated
across most states. We present a version of the empirical analog to X, in Figure A.1. For each
state pair, 12-month BPG has a positive correlation. This finding agrees with another prediction
of the GS framework, whereby for each locality s, permits are positively related to stock prices
and returns (as in Proposition 1). There is some evidence of geographic clustering by region, and
two states are more likely to have BPG series which co-move if they share a border.

A4 INCORPORATING REGULATORY CONSTRAINTS

We endogenize the construction costs in the housing development stage of the model.
Construction costs impact the value of the exercised permit via equation (2.1); greater
construction costs lower the number of equilibrium permits filed, hampering permit growth
gs relative to its historical baseline. Features of the regulatory environment, such as ad valorem
permitting fees, administrative delays, and costs of complying with land use statutes.

We incorporate these elements of construction costs by supposing in each location s and
period t, a representative developer facing perfect competition hires local labor N;; to produce
next-period net new housing Qs;, subject to decreasing returns to scale:

Qst = As(Hst, Ls) - N, p € (0,1) (A.21)

The shifter As(Hs, Ls) embeds the land endowment L capturing physical constraints. The factor
H,; accounts for the existing housing stock in an area. Favilukis et al. (2023) model zoning
constraints via A; = 1 — Hy;/H;, where H; represents the square footage available for residential
use. Zoning may interact with physical geography via As = Ls- (1 — Hs;/Hs). A greater land
endowment raises the scale of housing that is feasible, whereas restrictive zoning (i.e., a lower
H;) renders development more expensive. This particular parameterization captures the idea
that producing an additional unit of housing is more expensive if any area is already “built
up." For instance, if an area is already nearly at residential capacity, construction may require
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FIGURE A.1. Cross-State Correlation of Building Permit Growth (Empirical Analog to Z)
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organized according to Census

region (Northeast, Midwest, South, and West). To construct this matrix, we compute for each state a
series of 12-month cumulative building permit growth (BPG) using total residential permits and then take
pairwise correlations for each state. Cells in the matrix appearing in red and in darker shades indicate

higher correlations, while those in blue and darker shades indicate lower
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more creative solutions such as building taller structures or on terrain with a greater incline.
In general, 0A;/0Hs; > 0 and 0A;/dLs > 0.

On top of having to abide by zoning and geographical constraints, regulatory wedges include
per-unit permit fees 9, > 0 and variable, ad valorem fees x; arising from delays (e.g., forgone rental
revenue) or permitting fees that scale with the size of the project.! The final component of the
housing supply elasticity is compliance convexity. Extra costs may grow faster than linearly with
output due to risks stemming from the public process for gaining approval, design iterations,
or environmental risks (e.g., discovering contamination).

Under these physical and regulatory constraints on new housing supply, the developer’s
cost function is:

1/p
Cs (Qs,t) - Ws,t ( Qs,t ) + 195 Qs,t + gs Q;j(ss (A.22)
AS \_v_/ 1 + 55
1%’_/ per-unit fees -
abor costs convex compliance

The per-permit cost function C;s; is defined analogously for any individual permit Q;,;.
Developers choose to produce housing units Qs; (or equivalently N;;) to maximize expected
profits:

énagf) Hs,t = (1 - Xs) : ps,t—O—l Qs,t - Cs(Qs,t) (A23)
s,t—

where TE;[P;;.1] := Ps;,1 is the expected price of completed housing in ¢ + 1.2

We can write the marginal cost curve as:

MCy(Qs) = asQ%, + 05 + & Q2

Ly (A.24)
as:= Wy As 'P/p and a:=1/p—1>0

The developer’s zero-profit condition sets MCs(Qs;) = (1 — xs) - Psr-

The price elasticity of housing (permit) supply holding fixed wages, technology As and the
regulatory parameters is then:

e.(0) = AlogQu _ MC(Q) _ 00"+ +8Q"
| B dlogps,t-i-l N QMCL(Q) B was Q" + 5585 Q%

If there were no land use regulation (9 = J; = (s, Vs, then the elasticity would reduce to the
standard decreasing returns elasticity €;(Q) = p/(1 — p).

(A.25)

For simplicity, we have assumed all permits applications are approved, so that Q,; units
supplied is equivalent to the number of permits filed. However, this assumption can be easily
relaxed by instead supposing permits Qs; = 715(9;&,9) - Qs ¢, where the approval probability

1See Horton et al. (2024) for a discussion of permit fees for new single-family housing across U.S. counties. Permit
fee schedules can have fixed and variable components, depending on the jurisdiction. The variable component is
embedded in xs, reflecting that most jurisdictions set a progressive schedule of permit fees that increases with the size
of the home.

2For tractability, in our baseline setup in Section 2 we invoke a replacement cost approach such that the value of
a completed unit is always equal to the building’s construction cost plus the current value of the underlying land.
Effectively, this means developers have rational expectations of sale prices, or Ps; 1 = Ps;.
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715 (+) depends on other local land use constraint parameters. If permits are ever rejected (77 < 1),
then the elasticity formula (A.25) goes through with a multiplicative 7.

Embedding the developer’s block into the construction cost C;s; underlying the permit
valuation in (2.1)=(2.3) leads us to the following proposition, establishing what we refer to as
Hypothesis 4 in the main text of Section 2.

Proposition 4 (BPG Precision and Housing Supply Elasticity). Consider a version of the model
described in Section 2 in which construction costs determining the probability of permit exercise are pinned
down by the developer’s cost function in (A.22). If expected house price growth is affine in the risky asset
dividend d,, the precision of local building permit growth as a signal for aggregate asset price movements
is negatively correlated with local physical and requlatory constraints on new housing development.

Proof. Before proving Proposition 4, we note that expected house price growth being affine in
the risky asset dividend d; follows from a standard log-affine stochastic discount factor and a
log-affine rent process. The procedure follows Campbell et al. (2009), who show via standard
Campbell-Shiller log linearization that the rent-price ratio for housing behaves like the stock
market’s dividend-price ratio in that it forecasts returns and rent growth.® This is true at both
the national and metro area levels. Lettau and Ludvigson (2001) make a similar argument by
showing that the consumption-wealth ratio predict real stock returns. A large class of optimal
models of consumer behavior implies that consumption, asset holdings, and labor income are
cointegrated.

That is, if the stochastic discount factor is log m;,1 = py + 17, - dt + noise and the rent process
is log-affine, then the Euler equation implies:

Ps,t - Et [mt-i-l (rents,t—H + (1 - 5struct) : Ps,t+1>:| (A26)

where gty is the physical depreciation rate of housing. This follows from the gross housing
return identity:

(H) rents,tﬂ + (1 - 5struct) ) Ps,t+1

R =
41
s+ P,

Under log-normality, expected home sale price growth follows:
Alog Psi1 = Ag-di + 15y,  with Bldis] =0
Up to a first-order log-linearization:
Alog Qs ~ €5 - Alog Py q
So the BPG signal satisfies:

st = AlOg Qs,t = <€s : )\d)dt + €Nt + U
~—

noise

3The affine relationship between house price growth and dividends also follows from a model in which
households derive separate utility from consuming housing services and receiving labor income in the form of
dividends (i.e., households own the firms).
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Rescaling both sides by €A, yields the familiar signal format of z;; = d; + ¢ ;. Then the result
follows from:

Var(noise) (€5 Ag)?
Var(er) = LAANOBe) S Ad)
LZT(Ss,t> (es . )Lt)z Tq(s> X Var(noise)

Hence, holding the noise term fixed across places, a tighter geography (e, |.) lowers the precision
of building permits as a signal of risky dividends. O

B DeEetAaiLs oN BUILDING PERMIT DATA CONSTRUCTION

We offer further details on how we compile our longitudinal database of U.S. building permit
quantities and valuations (described in Section 3.1), including how we sourced the archival
reports, digitized the reports and conducted quality control, and how we adjusted the raw
series for seasonality.

B.1 DunN & BRADSTREET'S BUILDING PERMITS

Figure B.1 illustrates the number of cities reporting building permits each year from 1919 to
1957. The initial count was 164 cities, remaining constant until 1923. Subsequently, significant
increases were observed: 177 cities in early 1923, rising to 180 by year-end, and further to 185-187
in 1925. In 1926, the count reached 200, stabilizing at 215 from 1927 onward. Dashed lines indicate
years with changes in the number of reporting cities. Data labels above each bar show the exact
number of cities for each year. The final set of cities included in the Dun’s survey covers 44
states, with no cities surveyed in Alaska, Hawaii, Mississippi, Nevada, New Hampshire, and
Wyoming. Additionally, we drop New Mexico, Rhode Island, and Vermont from the panel, as
those states have incomplete time series for their cities.

We aggregate the city-level Dun’s permit value totals up to the state level to use in our analysis.
Aggregating to the state level helps reduce the scope for measurement error arising from the
staggered entry of smaller cities into the survey and the fact that permits can be reported in a
lumpy fashion within the year, with different cities within each state operating on different filing
calendars due to differences in how the local town clerks report records to the Dun’s inspector.
We aggregate to the state level in two ways. First, we simply total all permit values across cities
within the same state-month; we plot this as the “unweighted" series in Figure B.2. Second, we
compute a weighted state-level total by weighting each city’s permit count in a given month in
proportion to its Census population relative to the statewide population in that year; we plot
this as the “population-weighted" series in Figure B.2. Since city-level population estimates are
missing for some cities in the earlier part of the sample, we cannot compute population-weighted
permit totals for 11 states, reducing the number of states in our panel to 30. However, population
weighting helps account for the fact that city boundaries may have shifted over time, particularly
during episodes of mass migration during the 1920s and the Dust Bowl period of the 1930s.

We emphasize a few broad patterns in the permits data for the pre-1960s period, as pictured
in Figure B.2. We plot the X-13 seasonally adjusted per capita series, where we run the X-13
ARIMA-SEATS filter separately for the population-weighted and unweighted series. We describe
the seasonal adjustment procedures in Appendix B.4. First, the data pick up the Roaring
1920s and postwar baby boom periods—with permits skyrocketing across most states during
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FIGURE B.1. Number of Cities Reporting Building Permits: 1919-1957.

w[vlelvoeelele]elelelw]eeleleeoe|elve]elelelwel=I=(= 1~
— ===l [<[< <
oo ffonfouffenfiovffenflonffouffonffonffenfionffenfionfonffonffonfonfionffenfionffou oo ffon e fieN fren
S
RN
R~
< e Tl =1
2] |12 | [2Y 2]
— I~~~
o — ™ To) N~ o — ™ [T} N~ (o)) — ™ To) N~ o — ™ To) N
— N IS N [N N ™ ™ ™ ™ 52} < < < < < To) [te) To) o)
o o o o o o o o o o o o o o o o o o o o
- - - - - -~ - -~ - - - - - - - - - - - -

Notes: This figure illustrates the number of cities reporting building permits each year in Dun & Bradstreet’s
publications. The initial count was 164 cities, remaining constant until 1923. Subsequently, significant increases were
observed: 177 cities in early 1923, rising to 180 by year-end, and further to 185-187 in 1925. In 1926, the count reached
200, stabilizing at 215 from 1927. Two cities, Albuquerque, NM and Billings, MT were added in 1954M1 until Dun’s
Statistical Review ceased publication in 1957M10.

those decades. Second, comparing the population-weighted vs. unweighted series reveals the
influence of inter-state migratory patterns. For instance, the wedge between the weighted and
unweighted series is largest in states like California and Florida, which experienced mass
migration during the 1930s Dust Bowl period (Baerlocher et al., 2024) and 1920s Florida Land
Boom (Knowlton, 2020; Calomiris and Jaremski, 2023), respectively. Third, there are idiosyncratic
spikes in permitting activity for some states which do not seem to correspond to any imminent
recession risk. A notable example of this is that New York State permits jump in 1957M1,
corresponding to the state legislature’s passage of an overhaul of the property tax system which
effectively increased tax rates levied on new commercial properties. For this reason, in our
analysis using the Dun’s data in Section 5.2, we winsorize the resulting BPG volatility series
at the 1% tails within each state to minimize the influence of such outliers in some regressions.

B.2 U.S. Census BUREAU’s BUILDING PERMITS REPORTS

Origins of Census BPS Reports (1959-1969). Our data from 1959 onward originate from
the Census Building Permit Survey (BPS). The BPS consists of four main series of interest
with publication dating back to May 1959 when the survey was piloted (note that the series
names have changed slightly over time):

1. C20: Housing Starts and Building Permits: Monthly counts of housing starts and building
permits filed for single-family and multi-family housing units and mobile homes. The
Census ceased this publication in 2001. Since the information in this series is not
geographically disaggregated and aggregated permit counts are provided in the C40 and
C42 reports (see description below), we do not use this series in our main analysis.
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2. C40: Housing Authorized in Individual Permit-Issuing Places: Monthly permit counts
and valuations reported at the county and town level. See description below for more
details.

3. C42: New Residential Construction Authorized in Permit-Issuing Places: Monthly permit
counts and valuations reported at the MSA and state level. See description below for more
details.

4. C50: Residential Alterations and Repairs: quarterly data on expenditures towards
residential additions, alternations, maintenance and repairs, and replacements. The
information in the C50 reports is sourced from household surveys and geographically
disaggregated only to the Census region level. We do not use this series in our main
analysis. The C50 series forms the basis for the Survey of Residential Alterations and
Repairs, which the Census discontinued in 2007Q4.*

Most of the data on permit counts and valuations used in our main analysis are covered by the
C40 and C42 series, depending on the month-year date and level of geography.

Post-1966, the Census also publishes annual summary statistics combining information from
the C40 and C42 series, with the C40 and C42 labels used interchangeably for these annual
reports. For example, the disclaimer from the 1968-1969 C40 summary statistics volume
informs us that:

“Data on housing authored in permit-issuing places are published by the Bureau of the
Census in two reports, C.40, Housing Authorized by Building Permits and Public Contracts:
Individual Places, which is sold by the Government Printing Office, and C.42, Housing
Authorized by Building Permits and Public Contracts: States and Selected Metropolitan
Statistical Areas, which is sold by the Bureau of the Census. The 1966 annual summaries
of these reports were consolidated and issued through the Government Printing Office under
the joint designation C.40/C.42.”

The Census collects each of the four series at a monthly frequency, and the naming convention
of the periodical follows the year-month. Example: C42-68-12 would contain state and MSA-level
residential building permits issued in December 1968. Each set of monthly tables is preceded by
a cover page that indicates the month and year in which the numbers pertain. This information
on the cover page needs to be used in place of the publication date, since the publication date
lags the actual information collection. The tables also sometimes, but not always, list the date
the information was reported in the title caption.

For most of the 1960s, the tables in C40 are disaggregated to a “place” (ie., a “town”
or “county” level), whereas the C42 series contain state and MSA-level tables. The Census
cautions that the county and place-level statistics may not aggregate to match the state or
MSA-level totals due to rounding and the imputation procedures the Census employs to deal
with survey non-response in creating state or MSA-level totals. Under the consolidation between
the Government Printing Office and Census Bureau mentioned in the above quote, starting in
1969 the labeling reverted back to C40 being used to refer to the monthly reports for all three
levels of geography. The title of C40 was renamed to “Housing Authorized by Building Permits
and Public Contracts.” After 1969, the Census retired the C42 series label.

“4Data for the modern Survey of Residential Alterations and Repairs can be found on the Census website: https:
//www.census.gov/construction/c50/c50index.html.
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1970s BPS Series.  Starting in 1970, the information previously contained in C42 was
incorporated into an expanded C40 series. As a result of this consolidation, the MSA-level tables
in the 1970s contain more MSAs than in the 1960s, since the totals were apparently cross-walked
between the “place” to the relevant MSA definition of the day. The state-level information is
contained in “Table 2. Region, Division State, and Puerto Rico: New Housing Units Authorized
in Permit-Issuing Places.” The MSA-level information is contained in “Table 3. Selected Standard
Metropolitan Statistical Areas: New Housing Units Authorized in Permit-Issuing Places” in
both the 1970s and 1980s.

1980s BPS Series. In the 1980s, the format stayed largely the same as in the 1970s, except
the December monthly tables are published together with the annual reports. The content of
reforms to the survey, which resulted in the modern data beginning in 1988, is alluded to on
the cover page of the January 1987 report (C40-87-1):

“Beginning with data for April 1987, two changes will be made to the procedures used to
seasonally adjust building permits estimates. First, the seasonal adjustment factors will be
recomputed each month using all available data rather than using projections based on data
through March of the previous year. Second, except for the total and one-unit estimates,
published figures will be adjusted directly rather than being derived by summing adjusted
components. The one-unit (single-family) estimate will be derived by adjusting and summing
its regional components. The total will be derived by summing the adjusted estimates of units
by type of structure (1, 2-4, and 5 or more). Each regional total will be adjusted separately.
Studies have shown that the revised methodology will usually result in small revisions.”

Monthly data at the state and sub-state levels only start in January 1988 in the master BPS
file downloadable directly from the U.S. Census website, or for individual geographies via
the FRED APL

Sourcing the reports. We received a collection of the pre-1988 scanned C42 reports directly
from the Economic Indicators Division of the Census Bureau. We then downloaded from
HathiTrust all non-duplicate scans of the *.PDF and *.TXT files from the publications for the
series in the month-years other than the ones we received directly from the Census Bureau. We
inspect the *.TXT files in cases where the scan is deprecated to the extent that we cannot read
specific entries. However, we use our own OCR procedures to digitize the data, as described
in Appendix B.3. For years before 1970, we focus on the C42 scanned PDFs, which contain
many monthly tables appended within the same year or a subset of adjacent years. For the
1970-1988, the state-level and MSA-level tables are in the C40 series. We then screened all relevant
tables within each scanned report for quality using the OCR tools. In cases where an entire
scanned table was too deprecated in the HathiTrust volumes, we contacted the Regional Federal
Depository Librarian at the Connecticut State Library to obtain fresh, high-quality scans.

In Figure B.3 we plot the raw seasonally adjusted permit counts we collected from the Census
BPS, starting in 1961, the first year where the survey follows its now-standard format. The
displayed trends are similar relative to Figure 2 which plots per capita permits. Most states
experienced a large boom in new residential permitting during the 2000s boom, but single-family
permit counts had only recovered in a small handful of states in the South (NC, TN, TX) on
the eve of the first wave of COVID-19 lockdowns in March 2020. Due to local public health
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restrictions (Ghent et al., 2024) and weakened demand for leased space due to COVID-19
exposure risk (Ling et al., 2020), permitting activity precipitously fell for both single-family
and multi-family units during 2020 and 2021.

B.3 DiGiTizATION PROCEDURES

To create our geographically disaggregated database of building permits, we rely on several
optimal character recognition (OCR) techniques to scale up the digitization from scanned tables
in PDFs. Collecting all the information used in our main analysis would be excessively time
consuming given the monthly frequency of the reports and our use of state and MSA-level
(or city) data. For the post-1960s segment of our sample from the Census Building Permits
Survey, each annual volume consisting of the twelve monthly reports and annual summary
statistics regularly comprises over 500 pages of tables and text. There is less information to
process in the Dun’s Review publications, since there is only one level of aggregation (city) and
no separate tables for permit counts vs. valuation totals and single-family vs. total residential
permits as there is in the modern Census survey.

We combine two sets of OCR tools to digitize all the permit tables. First, we use the standard
ABBYY FineReader PDF software, combined with a customized Excel VBA code to purge the
output of any extraneous characters (e.g. “@"). Second, we use the Layout Parser Python package
designed by Shen et al. (2021) to apply modern deep learning algorithms to the digitization
of large-scale corpuses of historical text. We use the Tesseract OCR engine to implement the
Layout Parser routine. Tesseract provides a confidence level, or “score” for each rectangular
block it identifies in the data; the score is set to -1 if Tesseract identifies a block but fails to
detect any characters in that cell. We drop any output from blocks with a score less than 90 and
filter out any extraneous characters from the remaining output.

After implementing both methods, we then compare the fraction of cells on each page
populated data to the fraction obtained from ABBYY. For over 70% of the pages, the ABBYY
plus VBA method outperforms Layout Parser, but we use both methods because use of ABBYY
requires more “point and click" mechanical monitoring. For each table, we take the output file
which covers a greater fraction of cells. We then perform quality control by comparing reported
subtotals within each table to totals implied by cells within each row. For instance, in the Census
BPS, we check whether the “total" column matches the total number of permits obtained from
summing across the 1-unit, 2-units, 3 and 4-units, and 5-units or more totals. We set a tolerance
threshold such that cases where the row totals do not match can only be due to errors in the
digitization process rather than rounding. Tagging rows where the difference in row totals fall
outside this tolerance, we obtain an error rate of 1% to 2% of table rows, depending on the sample
period. We then assign hand-correction of the errors to our team of RAs. Finally, we standardize
the place names across tables within each underlying source publication, checking the Census
survey documentation to ensure the geographic span of the permit totals are consistent over time.

Figure B.4 provides an example of how Layout Parser identifies rectangular blocks of text
(highlighted in red) to convert to machine-readable text. The example is a scan from the
March 1986 MSA-level table with permit counts from the Census Building Permits Survey. This
“token" structure helps isolate place names in the table rows, but often struggles with particular
formatting conventions, such as the large type spaces between numerical characters for larger
counts and the ellipses in the row headings. Figure B.5 displays the resulting output from Layout
Parser on the left-hand side opposite the raw PDF table scan on the right-hand side. Comparing
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the two tables, the package is able to correctly identify most of the numerical and missing entries
(indicated by an en-dash). However, extraneous characters appear in the place names, and there is
no easy way to automatically fix the formatting so that row headings are attached to the correct
set of data entries. We also cannot retroactively add back in the row labels using a common
alphabetical ordering given that the set of MSAs (or counties and towns) included in the changes
month-to-month. For states, this drawback to Layout Parser is less of an issue.

Layout Parser’s performance improves relative to ABBYY during the earlier period of our
sample in which we source the permits data from scans of the tables in Dun’s Review, as described
in Appendix B.1. Figure B.6 shows sample output from a scan of part of the table of annual
permit valuation totals reported in the 1939 volume of Dun’s Review. Relative to the modern
data source, Layout Parser produces fewer typos for the numerical entries in the pre-1960s tables.
The training dataset used in the “Fast" version of the Shen et al. (2021) base model we use
consists of early 20th century newspapers, resulting in more accurate renderings of the permits
tables. While this could be due to the differences in contrast across training datasets (i.e. the
pages are more or less yellowed due to age), the gains in performance are limited even if we
experiment with the contrast settings for reading the modern Census tables into the package.
We use GPUs to run the routine in an attempt to best mimic the computing environment
used to train the digitization algorithm.

B.4 SEASONAL ADJUSTMENT METHODS

Given the high degree of intra-year cyclicality in the real estate sector relative to the seasonality
of stock and bond returns, it is critical to seasonally adjust our building permits series before
computing growth rates and volatilities. The Census provides its X-13ARIMA-SEATS program
to strip macro time series of their seasonal components.” We set up a Linux machine to run the
X-13 routine and adapt the underlying source code to accommodate longer time series so that
we can apply the filter to our entire sample. To ensure that we are able to match the seasonal
adjustments applied by the Census to the modern time sample, we run the X-13 filter on the
unadjusted permit counts series obtained through the FRED API and compare our resulting
seasonally adjusted series to the seasonally adjusted series publicly available through FRED.

Appendix B.4 shows that in the monthly state-level panel of building permit levels, our X-13
filtered series and the seasonally adjusted series downloadable from the Census via FRED line
up almost perfectly, with an R? of 99.99%. One limitation to the X-13 filter routine provided
by the Census is that it cannot accommodate missing values. Hence, for a small number of
cases where the Census monthly report lists an “NA" value for permit counts of valuations, we
interpolate using the midpoint between adjacent months with non-missing values for a given
locality. For instance, permit counts are missing in May 1976 for Massachusetts, so we fill in
the value for May 1976 using the average of the values reported for Massachusetts in April and
June of that year. Our use of midpoint interpolation leads to the negligible differences between
seasonally adjusted permit levels visible in Appendix B.4.

To maintain consistency over our full permits database spanning 100 years, we use the
X-13 filter with this midpoint convention for filling in missing values in both the post-1960s
Census period of our sample and the pre-1960s sample sourced from Dun’s Review. Our
results are qualitatively similar, albeit estimated with larger standard errors, if we instead

5The documentation and interface programs can be downloaded here: https://www.census .gov/data/software/
x13as.html.
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FIGURE B.4. Example: Layout Parser Fields from March 1986 Building Permits Survey
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FIGURE B.7. Comparison of X-13 Filter to FRED/Census Seasonally Adjusted Data

A. Single-Family Home (SFH) Permits B. Total Private Residential Permits
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Notes: The figure compares seasonally adjusted Census building permit counts downloaded via the FRED API vs.
the raw Census building permit counts that we seasonally adjusted using the X-13ARIMA-SEATS software provided
by the Census. Each point in the scatterplot refers to a state-month observation. Panel A performs this exercise for
single-family home permits, while Panel B does this for all total private residential permits (i.e. SFH + multi-family
permits, excluding any permits tied to public contracts). We implement the X-13 filter on a Linux workstation.

interpolate missing values as zeroes. For low levels of raw unadjusted permits, the X-13 filter
will produce negative values, which is not possible in reality. In such cases, we replace negative
post-filtered values with zeroes.

B.5 SrriciING TOGETHER PERMIT VALUATION SERIES

We must address a data gap between our two primary sources to construct a continuous
time series of building permit valuations. Dun’s Review ceased publishing permit tables after
October 1957, while the Census Bureau’s Building Permits Survey (BPS) began in May 1959,
with state-level information available at monthly frequency starting in May 1960. To bridge this
26-month gap, we digitize tables from the New York State Construction and Real Estate Census,
which report comprehensive permit valuations covering both single-family and multi-family
housing during this period. This source is particularly suitable for bringing the time series gap,
as total valuations closely align with both Census and Dun’s Review figures during overlapping
months, suggesting consistent measurement methodology.

Following standard practices in the construction of long-run economic time series (e.g., Shiller,
2015; Jorda et al.,, 2019), we implement a three-step procedure to create a consistent series.
First, we convert all nominal values to 2012 dollars using Shiller’s (2015) long-run Consumer
Price Index series, which accounts for changes in purchasing power over time. Second, we
apply the X-13 ARIMA-SEATS seasonal adjustment filter to each component series, following
the Census Bureau’s methodology for construction statistics (U.S. Census Bureau, 2022) (see
Appendix B.4 for details). Finally, we interpolate backwards using a Vector Autoregression
(VAR) model of order one with the New York State data as an input. Figure B.8 plots the
version of our one-hundred year time series in Figure 1 reflecting these interpolation procedures.
The interpolation procedure effectively bridges the gap without pronounced discontinuities for
the aggregate U.S. and housing supply inelastic states — which are more similar to New York
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FIGURE B.8. Total Real Value of U.S. Monthly Building Permits Issued, 1919-2019 (Interpolated)
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Notes: The figure replicates the century of real building permit valuation data from Figure 1. We interpolate the gap
between our main data sources over the period 1957M11 to 1960M4 using the steps outlined above by feeding in data
from the New York State Construction and Real Estate Census to estimate a VAR(1) model.

— but there is still a level shift across the gap for the more dissimilar supply elastic states.
We unfortunately lack similar permits data from other state censuses to help mitigate this
discontinuity, and therefore, in most of our analysis, we divide our dataset into post-1960s
BPS and pre-1960s Dun’s samples.

B.6 GOING BETWEEN PERMIT QUANTITIES AND VALUES

Despite our finding that permit quantities and valuations are nearly 100% correlated in the
modern Census span of our data, it may be the case that volatility in permit quantities and
valuations are more divorced in earlier time periods where housing price indices are not
readily available at geographically disaggregated levels. We address these additional concerns
by checking robustness of our results to using three sets of alternative series:

1. We use the historical housing price indices produced by Lyons et al. (2024) to extend v,
further back to 1960 for 30 cities with home sale newspaper listings.

2. We deflate the Dun’s series using annual state-level construction cost indices collected from
volumes of Building Construction Cost Data, published by R.S. Means beginning in 1942 to
present, to isolate a measure of permit quantities which can be spliced together with the
Census Q;; series. D’Amico et al. (2024) use a subset of the volumes from R.S. Means
starting in 1998 to estimate the cost of economy quality homes. Conversely, we can convert
Census Qs series to V;; using the construction cost data from 1960 onward to improve the
match with the replacement cost values collected in Dun'’s.

3. We digitize the rental price indices available from U.S. Bureau of Labor Statistics (1954) for
1919 - 1952 and assume a constant cap rate for multi-family structures to create another
deflator for 20 cities” valuation series.
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C ALTERNATIVE GARCH SPECIFICATIONS

In this appendix, we compare the convergence properties of the three most common GARCH
model specifications in the finance literature. We show that for most samples and time periods
in the building permits data, GARCH outperforms GJR and E-GARCH in terms of convergence
rates and unique solutions. As a robustness check, we present results using GJR-GARCH as
the next-best alternative specification for BPG volatility.

C.1 StaBiLity Tests oF GARCH MOoODELS

We justify our use of the workhorse GARCH(1,1) specification in equation (C.2) for computing
conditional volatility of building permit growth (BPG) by demonstrating that alternative GARCH
models often converge to multiple solutions when applied to the building permit data or
do not converge at all for some states-level permits series. There are three main classes of
GARCH models used in the financial economics literature. For each model, we retain the
same mean equation:

Xy =0+ 61 -x,_ 1+ e, with g ~ N(0,07) (C.1)
1. GARCH(1,1):
(cCARCENZ — o by - €2 | +ap - (0CARCEN2 st w; > 0o +ap < 1 (C.2)

2. GJR-GARCH:
(Y =g+ ag €2 ) +an- <0'tG_]1R>2 +y-e? - 1{er g <0} stoag +ap+ % <1l (C3)

3. E-GARCH: An advantage to the E-GARCH augmentation is that it can capture a stylized
fact about stock returns that the standard GARCH model cannot. Namely that negative
shocks at period t — 1 have a stronger effect on time t variance than positive shocks.
Another advantage is that estimating a log-likelihood reduces computational time. There
are no parameter restrictions imposed on the E-GARCH specification because the variance

is always positive by construction.
2
—1\/ = 4
V n) (C4)

We estimate the three conditional volatility models for U.S. aggregate and state-level permit
series and separately for single-family homes (SFH) and total private residential permits (TOT).
We perform two versions of the same simulation exercise in which we vary the constraint
on the starting values for the optimizer routine and the parameter domain on E-GARCH. In
both versions, we adopt the textbook optimization constraints listed above for GARCH(1,1)
and GJR-GARCH. Each simulation takes 10,000 draws from the feasible set of starting values
with replacement and then runs variance targeting on the demeaned permit growth time series
using the basinhopping routine in Python.°

€1

EXD
]

E_
ln(U'tEXP)Z =0y + oy - <0_2X1P> —+ n ‘IH(O'tE_le)Z—F’)/. <
t—1

SDocumentation for basinhopping can be found here: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.basinhopping.html.
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FIGURE C.1. Convergence of Coefficients for Conditional Volatility Models
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Notes: We illustrate the results of simulation version 1 by plotting the coefficients of convergence for the three main
types of GARCH models considered in the literature. We take 500 random draws with replacement of starting
parameter values of (xq,ap) on the interval a; € (—1,1) for E-GARCH and «; € (0,1) for the other two models.
For each draw, we estimate via quasi-maximum likelihood estimation (QMLE) the GARCH(1,1) [blue] specification
given by equation (C.2), the GJR-GARCH [orange] model from equation (C.3), and the E-GARCH [green] model from
equation (C.4). We estimate each model for building permit growth (BPG) volatility, where we compute aggregate
U.S. seasonally adjusted single-family home building permit growth covering the modern Census Building Permits

Survey (1988M1 to 2019M12).
Simulation Version 1

* GARCH specifications:

a;

— Optimization constraint: a; +ay <1

— Starting values constraint: select two random non-negative values satisfying a1 +ay =

0.9

— Parameter domain: g > 0;0 < a1 < 1,0 < ap < 1

* GJR-GARCH specifications:

— Optimization constraint: a; +az + /2 <1

— Starting values constraint: select three random non-negative values satisfying a1 +

ay+7v7 =09

— Parameter domain: g > 0,0 < 1 < 1,0 < < 1,0 <y <1

¢ E-GARCH specifications:
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- Optimization constraint: none
— Starting values constraint: select three random values satisfying aq + a2 +y = 0.9

— Parameter domain: ag € R; —1 < a1 < 0.9;,—1 <ap <09;,—-1 < v<09

Simulation Version 2
* GARCH specifications:

— Optimization constraint: a1 +ay <1

— Starting values constraint: select two random non-negative values satisfying a1 +ap =
0.999

— Parameter domain: ap > 0,0 < 1 < 1,0 < ap < 1
* GJR-GARCH specifications:

— Optimization constraint: a1 + a2 +7/2 <1

— Starting values constraint: select three random non-negative values satisfying aq +
ax + v =0.999

— Parameter domain: ag > 0,0 <1 < 1,0 < < 1,0 <y < 1
¢ E-GARCH specifications:

— Optimization constraint: none

- Starting values constraint: select three random non-negative values satisfying ay +
ay + v = 0.999

— Parameter domain: ap € R;0 < a3 < ;0 <ap < 1,0 < vy <1

There are two key differences between the simulation versions. In version 1, we select starting
values away from the boundaries of the parameter domain. In version 2, we allow for starting
values at the boundary of the parameter domain but additionally require that the E-GARCH
coefficients be strictly positive so that the parameter domain matches the domain for GARCH
and GJR-GARCH.

Table C.1 summarizes how each of the GARCH models performs in terms of convergence
rates (CR) and stability (i.e., number N of unique solutions up to four decimal places). We
define two solutions to be identical if the estimated parameters of the GARCH model are
the same up to five decimal places. In Panel A, we present results from simulation version
2 which imposes textbook optimization constraints and the same parameter domains across
the models. We find that for the modern period GARCH outperforms GJR-GARCH in terms
of the multiplicity problem. For the two non-unique solutions GARCH delivers for the TOT
series, the parameter estimates only differ at the fourth decimal place. In Panel B, we compare
simulation versions 1 and 2 and use the more recent years of data for which we can deflate
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TABLE C.1. Convergence and Parameter Stability across GARCH Models of BPG Volatility

A. Single-Family Homes vs. Total Private Residential Permits: Simulation Version 2

Single-Family Homes Permits Total Private Residential Permits
Convergence N. Unique Convergence N. Unique Convergence N. Unique Convergence N. Unique
Rate Solutions Rate Solutions Rate Solutions Rate Solutions
GARCH 0.9876 44 0.9984 4 0.9984 2 0.9999 2
GJR-GARCH 0.9457 7 0.9986 14 0.9976 5 0.9996 3
E-GARCH 0.9974 11 0.9998 7 0.9992 6 1 1
Sample 1960 - 2019 1960 — 2019 1980 -2019 1980 — 2019 1960 - 2019 1960 - 2019 1980 -2019 1980 — 2019

B. Comparing Simulation Version Results in the Post-2000s Period

U.S. Building Permits: P x Q

Simulation Version 1 Simulation Version 2
Convergence N. Unique Convergence N. Unique
Rate Solutions Rate Solutions
GARCH 0.9999 4 0.9999 4
GJR 0.9997 20 1 16
E-GARCH 0.3907 3859 0.9979 4
Sample 2000 - 2023 2000 — 2023 2000 - 2023 2000 — 2023

Notes: We estimate GARCH, GJR-GARCH, and E-GARCH models for each of the two aggregate U.S. building permits
series: (i) Single-Family Homes (SFH); and (ii) Total Private Residential Permits. We consider the samples over the full
Census period of 1960-2019 and the more recent sample from 1980-2019. For each model and series, we report two
items: (i) the convergence rate, defined as the fraction of starting parameter draws for which the optimization routine
converges to a solution; and (ii) the number of unique solutions obtained from each GARCH model, where uniqueness
is defined up to five decimal places. See text for simulation details.

permit quantities according to housing price indices. Convergence rates are broadly similar and
close to 100% across all three GARCH types in version 2.

In cases of instability where N > 1, we assess how much two GARCH models deviate
from each other on average. To do this, we compute all convergent conditional volatility series
for each method. We then compute all pairwise correlations between the conditional volatility
series estimated via two different specification (i.e., between GARCH and GJR-GARCH, between
GARCH and E-GARCH, and between GJR and E-GARCH). Finally, we average across the
pairwise correlations and report the results in Table C.2. Across different combinations of
series (SFH for single-family homes vs. TOT for total residential permits) and GARCH models,
instances of multiple solutions still result in conditional volatility estimates which are highly
correlated, on average. Hence, despite any instability, our results on the predictability of BPG
volatility are broadly robust to the choice of GARCH specification.

Importantly, we conduct our simulation exercises in using a segment of the data from the
modern version of the Building Permits Survey, which consists of monthly building permit
reports already digitized by the Census and made available to the public by download. This
means that our finding of multiple solutions for GJR and E-GARCH models as applied to
building permits cannot be due to any measurement error arising due to either our digitization
methods—although, as discussed in Appendix B.3, we have multiple quality control measures
in place—or due to low-quality versions of any extant scans of copies of the physical reports.
Nonetheless, the instability of GJR and E-GARCH holds for different sample cuts, including

OA-30



TABLE C.2. Average Pairwise Correlations between GARCH Conditional Volatility Estimates

Series Sample Period ~ Corr(ogar,0gr) Corr(0Gar,0eGr) Corr(ogr, UEGR)
SFH Permits 1960 - 2019 0.8115 0.9538 0.8282
SFH Permits 1980 - 2019 0.8899 0.9754 0.8829
Total Permits 1960 - 2019 0.8590 0.6854 0.5439
Total Permits 1980 - 2019 0.9162 0.7866 0.6840

Notes: We estimate GARCH, GJR-GARCH, and E-GARCH models for each of the four aggregate U.S. building permits
series over the full Census sample period of 1960-2019 and using the more recent sample from 1980-2019. For each
unique solution obtained from each GARCH model, where uniqueness is defined up to five decimal places, we then
report the average pairwise correlations across solutions between two models. See text for simulation details.

when we fit each GARCH model to our U.S. aggregate BPG series covering the Census time
period and when we estimate the GARCH models for each U.S. state.

C.2 MaIN PrepicTtaBILITY RESULTS USING GJR-GARCH

We replicate the main analysis from Section 5.1 for the longitudinal sample of permits from the
Census Building Permit Survey. Table C.3 shows that the loading on aggregate BPG volatility
is quantitatively similar regardless of the choice of GARCH model, across various sets of
controls for macroeconomic conditions. This is perhaps unsurprising given the findings from
our simulation exercise that GARCH(1,1) and GJR-GARCH deliver highly correlated conditional
volatility series when applied to nationwide permit series, even at the extremes of the possible
solution set. While the aggregate loading on BPG volatility is of a similar magnitude to the
coefficients in Table 2, the BPG volatility estimated via GJR-GARCH has more explanatory
power for both equities and corporate bonds. The incremental R? of single-family home volatility
for equities in Table C.3 is 9.5% (Panel A, column 1) compared to 3.1% for GARCH-implied
volatility; for bonds and single-family permits, the incremental R? is 5.7 p.p. greater for
GJR-GARCH than for GARCH(1,1).

The cross-sectional results display a similar pattern when we compare GJR-GARCH to
GARCH(1,1). Figure C.2 reproduces Figure 4 in which we regress equity and bond return
volatility on BPG volatility for each state. While the ordinal ranking of states according to
the magnitude of their loadings on BPG volatility is similar for GJR-GARCH vs. GARCH(1,1),
the predictability is almost always greater and more precisely estimated for GJR-GARCH. For
example, Florida single-family permits the elasticity on stock return volatility is significant
at the 1% level and 30% greater when measured according to GJR-GARCH, compared
to GARCH(1,1). For corporate bond return volatility, there are fewer differences in the
state-by-state point estimates across the two GARCH models. Overall, we find that the use of
the workhorse GARCH(1,1) specification in our main results results in conservative estimates
of the predictability of BPG volatility for asset returns.

C.3 Trsts orF NormALITY OF BPG DISTRIBUTIONS

The GJR-GARCH specification was originally developed to account for the extreme skewness
in the distribution of risky asset returns. Therefore, it is possible that for some permits series
featuring fat tails in the permit growth (BPG) distribution, GJR-GARCH is the more appropriate
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TABLE C.3. Regressions of Asset Return Volatility on Nationwide U.S. BPG Volatility (GJR-GARCH)

A. Total Private Residential Units BPG Volatility

Asset Market: Equities Corporate Bonds
@ @) ®) @) ®) (6) @) ®) ©) (10)

oBPG 0.088*** 0.027** 0.026**  0.025** 0.064** 0.070*** 0.036*** 0.035*** 0.033*** 0.016***

(2.82) (2.45) (2.47) (2.39) (2.57) (4.68) (3.76) (3.40) (3.18) (3.77)
Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v v’ v’ v’ v v’ v v’ v’ v
Lagged asset return vol. v’ v’ v’ v v v’ v’ v’
PopGrowth; v’ v’ v v’ v’ v v’ v
Leverage;—p v v v v’ v v
DSCR;—, v v v v v v
IPGrowth;—p v’ v’ v’ v’ v’ v’
DisasterNVIX; N v’ v’ NG
N 714 707 479 435 195 714 707 479 435 195
R? 0.109 0.471 0.463 0.471 0.605 0.185 0.367 0.452 0.444 0.544

B. Single-Family Units BPG Volatility

Asset Market: Equities Corporate Bonds
@ @) ®) ) ®) © @) ®) ©) (10)

af_Plc 0.074*** 0.024**  0.022**  0.022**  0.049** 0.076"** 0.044"** 0.040"** 0.038*** 0.015***

(2.60)  (240) (249) (241) (218)  (6.07)  (448)  (454)  (428)  (3.99)
Time sample 1960-19 1960-19 1980-19 1980-16 2000-16 1960-19 1960-19 1980-19 1980-16 2000-16
Monthly dummies v v v v v v v’ v’ v v’
Lagged asset return vol. v’ v’ v’ v’ v v v v
PopGrowth;—, v’ v’ v’ v v v v’ v’
Leverage;—p v’ v v’ v’ v v
DSCR;-, v v v v v v
IPGrowth; v’ v’ v’ v’ v v’
DisasterNVIX;_, v’ v’ v’ v’
N 714 707 479 435 195 714 707 479 435 195
R? 0.095 0.470 0.462 0.471 0.599 0.258 0.391 0471 0.463 0.543

Notes: The table presents estimates from equation (4.3) relating total return volatility to lagged building permit
growth (BPG) volatility. The difference relative to Table 2 is that we produce conditional BPG volatility using the
GJR-GARCH model in (C.3). In Panel A we use total private residential permits as the quantity measure Q;;, but
instead use permits attached to single-family units in Panel B. We include in most specifications a set of controls
for other macroeconomic observables directly related to BPG volatility, which might also drive aggregate financial
market volatility. PopGrowth refers to the annual population growth rate from the Census. Leverage is the aggregate
corporate leverage ratio based on firms’ annual filings in COMPUSTAT, computed as the sum of long-term debts
(dtt) and debts in current liabilities (dlc), divided by total stockholders” equity (seq). DSCR is the quarterly household
debt service coverage ratio from the Federal Reserve, defined as household debt service payments as a fraction of
disposable income. IPGrowth is the month-on-month growth rate in the industrial production index (INDPRO). In
some specifications, we add the natural disaster component of the News Implied Volatility Index (NVIX) of Manela
and Moreira (2017). We include a BIC-optimal number of lags for each specification with control variables, for which
we obtain a lag order of p = 1. The time sample varies depending on the data availability of covariates, with DSCR
available starting in 1980, and the NVIX available only up to 2016. t-statistics obtained from Newey-West standard
errors where we select for each specification the minimum lag order such that the estimator for the covariance matrix
is consistent. ***p < 0.01,**p < 0.05,*p < 0.1.
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model. We conduct separate tests for normality separately for each state and across different time
periods and in the pooled panel of states in our permits database. We calculate the test statistic
of D’Agostino et al. (1990) with the correction proposed by Royston (1992).”

Figure C.3 plots the distribution of monthly BPG for the entire U.S. (left-hand panels) and in
the cross-section of states (right-hand panels). There are clear differences in the normality of BPG
in aggregate vs. across states and for the pre vs. post-1960s period. In Panel A—regardless of
whether we include New York State, which has outsize influence on national building permits
during the prewar period—we can reject the null of a normal distribution on the skewness
dimension for aggregate U.S. BPG in the Dun’s data covering 1919 to 1957. Panel B shows that
we can only reject the null of no skewness relative to a normal distribution at the 5% significance
level, for both the population-weighted and unweighted permits series in Dun’s, indicating that
building permit growth in some states is more normally distributed than it is nationwide.

In contrast, in the modern Census sample of our data, aggregate U.S. BPG is almost perfectly
symmetric, with a p-value on the skewness test of 0.91 for single-family home permits. Mean
BPG is also much lower in the modern period, with zero average monthly growth in quantities
post-1960s compared to an average monthly growth rate of 0.6% in the pre-1960s sample based
on the valuations surveyed in Dun’s. However, despite these differences, due to the fat tails in
the BPG distributions, the joint Chi-squared test of normality combining the test statistics for
skewness and kurtosis always rejects the null of a normal distribution across all time series
and periods at the 1% significance level.

Table C.4 separately reports p-values from skewness tests for each sample time period and each
state. There is a clear positive correlation between the extent to which BPG volatility implied by
the GJR-GARCH model (as shown in Figure C.2 for single-family home permits) is strongly
predictive of asset return volatility and the degree of skewness in the BPG distribution. This
points to the appropriateness of the GJR specification for conditional BPG volatility in less
population-dense parts of the country exhibiting very large swings in permitting activity. The
results of this exercise also explain why for such states the magnitude and significance of the

loadings on (TtB_ppG differ depending on the GARCH specification we use.

D AbDDITIONAL RESULTS

We highlight some additional results in this appendix, including break dates implied by
Bai-Perron tests in the building permit series, adding controls for local economic conditions,
aggregate commodity risk, and household leverage, and principal component analysis over
longer time periods.

D.1 Break DATES IN THE GEOGRAPHIC CROSS-SECTION

We formally test for structural breaks in the seasonally adjusted state-level permit series and
GARCH-implied building permit growth volatility using the “one break at a time" sup Wald
statistics of Bai and Perron (1998). We adopt the standard symmetric trimming percentage of 15%,
such that for each series we search for breaks over 1969M5 to 2014M1. This trimming percentage
allows us to identify possible breaks around key economic episodes in the modern Census period,

"This corresponds to the default options for the sktest command in Stata.
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FIGURE C.3. Pooled Distributions and Skewness Tests for Building Permit Growth

A. U.S. BPG in Dun’s Review B. Cross-Sectional BPG in Dun’s Review
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Notes: The figure plots the distribution of month-on-month building permit growth (BPG) for the Dun’s Review data
in Panels A and B and for the Census Building Permits Survey (BPS) in Panels C and D. The Dun’s Review data
cover the period 1919M1 to 1957M10, while the Census BPS data cover 1960M5 to 2019M12. In the left-hand panels
we plot the distribution of monthly BPG computed using total nationwide permits. In the Dun’s sample we report
separate means and skewness test p-values for the entire U.S. and the entire U.S. excluding permits from New York
State to examine the influence of New York City. In the Census BPS sample, we report separate statistics for the
total residential permits (TOT) vs. single-family homes (SFH). The right-hand panels instead plot the cross-sectional
distribution of monthly BPG, which includes observations from each state’s permits time series. For the Dun’s sample,
we report separate statistics for population unweighted and weighted observations, while for the Census BPS sample
we again distinguish between TOT and SFH permit counts in computing BPG.
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TABLE C.4. Skewness Tests for Building Permit Growth by State and Subsample

Data Source: Dun’s Review (1919-1957) U.S. Census BPS (1960-2019)
Subsample: Unweighted ~Weighted  Total Single-Family
United States 0.000*** - 0.878 0.905
Alabama 0.000*** 0.000*** 0.443 0.023**
Alaska — — 0.000*** 0.560
Arizona 0.481 - 0.010%** 0.571
Arkansas 0.929 — 0.833 0.261
California 0.000*** 0.000*** 0.032** 0.653
Colorado 0.000*** 0.000***  0.000*** 0.819
Connecticut 0.138 0.138 0.036** 0.429
Delaware 0.600 — 0.008*** 0.002***
Florida 0.126 0.126 0.005*** 0.132
Georgia 0.063* 0.063* 0.127 0.043**
Hawaii — — 0.340 0.743
Idaho 0.697 — 0.000*** 0.000***
Tllinois 0.058* 0.058* 0.133 0.050**
Indiana 0.216 0.216 0.366 0.389
Iowa 0.096* 0.096* 0.000*** 0.163
Kansas 0.003*** 0.003*** 0.047** 0.000***
Kentucky 0.095* 0.095* 0.104 0.567
Louisiana 0.000*** 0.000*** 0.863 0.025**
Maine 0.219 — 0.001*** 0.589
Maryland 0.216 0.216 0.177 0.953
Massachusetts 0.079* 0.079* 0.028** 0.960
Michigan 0.284 0.284 0.082* 0.153
Minnesota 0.008*** 0.008***  0.009*** 0.006***
Mississippi — — 0.182 0.000***
Missouri 0.410 0.410 0.023** 0.010***
Montana 0.000*** — 0.513 0.129
Nebraska 0.396 0.396 0.144 0.784
Nevada — — 0.081* 0.020**
New Hampshire - - 0.683 0.011**
New Jersey 0.323 0.323 0.152 0.000***
New Mexico 0.050** - 0.949 0.350
New York 0.000*** 0.000***  0.000*** 0.003***
North Carolina 0.078* - 0.623 0.075**
North Dakota 0.953 - 0.044** 0.001***
Ohio 0.000*** 0.000*** 0.209 0.444
Oklahoma 0.067* 0.067* 0.793 0.442
Oregon 0.016** 0.016** 0.696 0.191
Pennsylvania 0.962 0.962 0.219 0.000***
Rhode Island 0.401 0.401 0.000*** 0.467
South Carolina 0.023** — 0.000*** 0.000***
South Dakota 0.017** - 0.015** 0.001***
Tennessee 0.065* 0.065* 0.844 0.016**
Texas 0.167 0.167 0.378 0.372
Utah 0.028** 0.028** 0.001*** 0.007***
Vermont 0.089* — 0.127 0.467
Virginia 0.011** 0.011** 0.720 0.019**
Washington 0.031** 0.031** 0.842 0.054**
Washington, D.C. - - 0.974 0.928
West Virginia 0.379 — 0.419 0.004***
Wisconsin 0.025** 0.025** 0.162 0.354
Wyoming — — 0.006*** 0.560

Notes: The table reports the p-value for D’Agostino et al. (1990) tests applied to the distribution of month-on-month
building permit growth (BPG) observations within each state’s time series for different subsamples. Within the Dun’s
Review sample, unweighted refers to monthly BPG based on raw X-13 seasonally adjusted permit valuations, while the
weighted series proportionally weights cities surveyed within each state based on their annual population to create a
state-level series. Within the Census Building Permits Survey (BPS) sample, we report p-values for the skewness test
applied to total residential permit (TOT) and single-family home (SFH) permit counts. ***p < 0.01,**p < 0.05,*p < 0.1.
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FIGURE D.1. Bai-Perron Break Date Tests for State-Level Building Permits
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Notes: We conduct Bai and Perron (1998) break date tests for each building permit series using the conditional
volatility of building permit growth computed via equation (3.3) in the left-hand panels, and levels in the right-hand
panels. We start with the full sample from 1960M5 to 2022M12 and then trim the sample by 15% on either side to limit
the dependence of the test on the start and end values of the time series. We then search over the trimmed sample
period for a maximum of seven breaks, searching for one break at a time according to the default test procedures in
the strucchange R package. Grey-shaded areas indicate NBER-dated recessions.

including the oil crises of the 1970s and stagflation and the Great Recession. We then search over
this trimmed sample period for a maximum of seven breaks. The maximum number of breaks we
identify in any state’s permit levels or BPG volatility series is five. Only one state, Iowa, features
no breaks in its building permit series, and two is the modal number of breaks.

Figure D.1 plots at each month over the trimmed sample period the number of states with
breaks in their GARCH BPG volatility (left panels) or seasonally adjusted building permits (right
panels). The breaks are concentrated around recession episodes and in the early 1970s around
spikes in oil prices. For both volatility and permit levels, and regardless of whether we consider
single-family permits or all residential permits, we uncover a large mass of states with breaks
on the eve of the Great Recession. Level breaks are more prevalent than volatility breaks, and
breaks are slightly less common in single-family permits (118 total breaks) than for the series
including all residential permits (125 total breaks), but breaks are more prevalent for single-family
permits around the Great Recession, consistent with the results shown in Section 5.3 in which
we extract the subprime factor as the first principal component. Overall, these tests complement
our evidence in the main text that building permits in the geographic cross-section are leading
indicators for real economic and financial volatility.

D.2 PrincirAL. CoMPONENTS OF BPG OVER THE LONGRUN

We conduct the same exercise as done in Figure 7 for the Great Recession episode, but instead
using the extended sample covering the full Census BPS period. That is, we run principal

components analysis (PCA) on the panel of Ugtp G for the top 20 U.S. states and plot the principal
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components (PCs) with an eigenvalue greater than one.® The first PC explains 20% and 31%
of the variation in BPG volatility for total private residential permits and single-family homes,
respectively. However, unlike around the Great Recession period, when we conduct PCA over
the full period starting in the 1960s, the first PC is dominated by input supply shocks rather
than the subprime mortgage factor. For both total and SFH permits, largest spikes in the first
PC correspond to the onset of the oil crises of the 1970s, including the first few months of
1973 (diplomatic fallout before the Yom Kippur War), the middle of 1975 when unemployment
peaked during the stagflation era, and the summer of 1980 (the Iran-Iraq War).

Cortes et al. (2024) show that the “war puzzle" identified by Schwert (1989) of lower stock
volatility during wartime and conflict periods coincides with build ups in defense spending,
which renders cash flows easier to forecast. On top of regressions in our main analysis in which
we directly control for aggregate and state-level leverage, these longitudinal PCA results belie
the argument that the predictability of BPG volatility originates from build ups in credit used to
finance risky investments with deferred payoffs, such as real estate development.

D.3 PrebpicTtaBILITY OF CRSP DIVIDENDS

We replicate our main analysis in Section 5.1 using CRSP dividend volatility as our main outcome
variable. We construct CRSP dividend volatility as the monthly volatility of the sesaonally
adjusted daily differences between the CRSP total return index (vwretd) and the CRSP ex
dividend total return index (vwretx), keeping the same all other aspects of our research design.
Table D.1 shows that aggregate U.S. BPG volatility is a strong predictor of dividends over
various periods and conditional on a set of controls for macroeconomic conditions such as
population growth, leverage, household debt service, industrial production growth, and the
war component of the NVIX of Manela and Moreira (2017). We focus on a the war component
of the NVIX as a possible confounding factor leading to spurious correlation between BPG
volatility and dividend volatility given that large spikes in dividends over the post-1960s period
correspond to defense build ups.

Notably, the predictive power of building permits declines in the post-2000s period around
the Global Financial Crisis, with the loading on 2P declining by almost one-half when we
compare the two specifications with the full set of controls (columns 6 vs. 8). The post-2000s
period corresponds to a 50% decline in dividend volatility over 2000-2019 relative to 1960-2000.
Together with the evidence in Table 2, BPG volatility is a stronger predictor of stock volatility
during cycles when the price component of returns accounts for the bulk of stock volatility.
However, consistent with our Grossman-Stiglitz modeling framework in Section 2, the BPG
volatility works well at forecasting dividend volatility, particularly during times when the cash
flow risk component of returns dominates. Since dividend payouts are highly seasonal, much
of the R? in Table D.1 comes from the time dummies. The incremental R? of 07 generated
by moving from a specification with only monthly dummies is 5.7% for single-family permits,
three times greater than the incremental R? of 1.2% we obtain for BPG volatility on total stock
return volatility over the full post-1960s period.

8Here we select the top 20 states by their 1960 Census population, although which states we include in the sample
ultimately does not matter for the general time series patterns in the principal components.
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FIGURE D.2. Principal Components of BPG Volatility from Census Data (1961 — 2019)
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Notes: The figure plots the time series of principal components of state-level total private residential (Panel A)
and single-family home (Panel B) monthly building permit growth volatility with an eigenvalue greater than unity.

BPG

Monthly building permit growth volatility is defined by ¢’} in equation (4.2). Our sample in both panels includes
the top 20 states ranked by 1960 decennial Census population. We conduct PCA over the time period 1961 — 2019,
excluding the post-COVID-19 period to ensure convergence of the GARCH models. Grey-shaded areas indicate

NBER-dated recessions.
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TABLE D.1. Regressions of CRSP Dividend Volatility on Nationwide U.S. BPG Volatility

A. Total Private Residential Units BPG Volatility

@ 2 3 @ ®) (6) @) ®)
Uthlc 0.0016***  0.0014*** 0.0012*** 0.0007*** 0.0014*** 0.0007*** 0.0005** 0.0004*
(6.51) (6.08) (5.18) (3.95) (5.60) (3.74) (2.10) (1.91)
Time sample 1960-19 1960-19 1960-19 1980-19 1960-19 1980-16  2000-19 2000-16
Monthly dummies v’ v’ v’ v’ v’ v’ v’ v
Lagged asset return vol. v’ v’ v’ v’ v’ v v
PopGrowth; NG Ng NG v
Leverage; v’ v’ v’ v’
DSCR;_, v v v
IPGrowth; v’ v’ v’
WarNVIX;—p v’ v’ N
N 714 714 707 479 670 435 239 195
R? 0.374 0.378 0.460 0.496 0.395 0.496 0.191 0.238
B. Single-Family Units BPG Volatility
1 ) ®3) 4) ®) (6) @) ®)
UF_PIG 0.0015***  0.0014***  0.0010***  0.0007*** 0.0013*** 0.0007*** 0.0005**  0.0004
(6.85) (6.57) (4.70) (4.08) (6.23) (3.89) (1.98) (1.36)
Time sample 1960-19 1960-19 1960-19 1980-19 1960-19 1980-16 ~ 2000-19 2000-16
Monthly dummies v’ v’ v’ v’ v’ v’ v’ v’
Lagged asset return vol. N v’ v’ v’ v’ v v’
PopGrowth; v v v v’
Leverage;—p v’ v’ v’ v
DSCR¢—p v’ v’ v’
IPGrowth;—p v’ N v’
WarNVIX;—p v’ v’ v’
N 714 714 707 479 670 435 239 195
R? 0.378 0.381 0.456 0.496 0.398 0.496 0.188 0.239

Notes: The table presents estimates from equation (4.3) relating CRSP dividend volatility (computed as the volatility
of vwretd — vwretx) to lagged building permit growth (BPG) volatility. In Panel A we use total private residential
permits as the quantity measure Qs , but instead use permits attached to single-family units in Panel B. We include
in most specifications a set of controls for other macroeconomic observables directly related to BPG volatility, which
might also drive aggregate financial market volatility. PopGrowth refers to the annual population growth rate from the
Census. Leverage is the aggregate corporate leverage ratio based on firms’ annual filings in COMPUSTAT, computed
as the sum of long-term debts (dltt) and debts in current liabilities (dlc), divided by total stockholders” equity (seq).
DSCR is the quarterly household debt service coverage ratio from the Federal Reserve, defined as household debt
service payments as a fraction of disposable income. IPGrowth is the month-on-month growth rate in the industrial
production index (INDPRO). In some specifications, we add the war component of the News Implied Volatility Index
(NVIX) of Manela and Moreira (2017). We include a BIC-optimal number of lags for each specification with control
variables, for which we obtain a lag order of p = 1. The time sample varies depending on the data availability of
covariates, with DSCR available starting in 1980, and the NVIX available only up to 2016. t-statistics obtained from
Newey-West standard errors where we select for each specification the minimum lag order such that the estimator
for the covariance matrix is consistent. ***p < 0.01, **p < 0.05,*p < 0.1.
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D.4 CONTROLLING FOR AGGREGATE CoMMODITY Risk AND HOUSEHOLD LEVERAGE

We extend our baseline results from Table 2 in Section 5.1 by showing that aggregate building
permit growth (BPG) volatility predicts asset return volatility even conditional on commodity
price risk and changes in household leverage. To do so, we compute the conditional volatility of
excess returns on an equally weighted commodity futures index constructed by Janardanan et al.
(2024). Commodity risk is a potentially important omitted variable because it may simultaneously
influence developers’ decisions to engage in home building and firms” input costs, subsuming
the predictive power of our BPG factor. Indeed, Figure D.2 demonstrates that the first principal
component of BPG volatility for single-family homes is 41% correlated with commodity excess
return volatility (20% if using GJR-GARCH), with both series spiking during the 1970s oil shocks.

Although our baseline regressions in Table 2 control for corporate leverage ratios and debt
service coverage ratios, one concern — especially in the years leading up to the Great Recession
— is that residential building permits simply reflect changes in the demand and supply of
mortgages. To address this concern, we download the monthly loan origination and application
series created by Neil Bhutta using the confidential Home Mortgage Disclosure Act (CHMDA).?
Relative to the public HMDA files which only reveal the origination year, the collapsed version
of the CHMDA data match the frequency of our building permits data. We sum the mortgage
totals across states to produce a nationwide total.

For this analysis, we focus on the post-1960s period covering the modern Census BPS due
to the fact that household and corporate leverage measures are only available in the modern
period. We present results in Table D.2. There are two key takeaways: one is that the loading
on ¢PPC is nearly quantitatively identical to those estimated in Table 2 after conditioning on
commodity price risk, as we do in columns (2) and (3) for equities and in columns (7) and (8)
for corporate bonds. Second, controlling for growth in household leverage demand, as proxied
by the month-to-month change in HMDA mortgage applications, halves the predictability of
0BPG around the Great Recession episode. However, the predictability remains substantial; a 1
p-p. is associated in the subsequent month with a 45% increase in stock volatility relative to
its monthly average in the 2000s. This is true regardless of whether we control for mortgage
application vs. origination growth, or instead control for the level or log level of mortgage dollars
originated (unreported). Overall, easy credit access for homebuyers or commodity price risk does
not eliminate the predictability of building permit volatility for financial markets.

D.5 StATE-LEVEL RESULTS CONTROLLING FOR Local Economic CONDITIONS

In this appendix, we show that our results from Section 5.1 showing the predictability of BPG
volatility in the geographic cross-section during the Census survey period hold after conditioning
on proxies for housing demand such as state-level leverage and population growth. We download
annual state-level population estimates from the Census and linearly interpolate within the year
to match the monthly frequency of building permits.

We construct state-level corporate leverage ratios by assigning the leverage of each
COMPUSTAT firm i in a given year t to its headquarters (HQ) state s and then compute the

9The data are downloadable at https://sites.google.com/site/neilbhutta/data.
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TABLE D.2. Regressions of Asset Return Volatility on U.S. BPG Volatility: Additional Controls

A. Total Private Residential Units BPG Volatility

Asset Market: Equities Corporate Bonds
@ @ ©) @) ®) (6) @) ®) ©) (10)

oBrG 0.028***  0.028"*  0.031**  0.046** 0.045** 0.036™** 0.037*** 0.040*** 0.017*** 0.017***

(2.59) (2.52) (2.45) (2.12) (2.10) (3.87) (3.59) (3.31) (3.25) (3.29)
Time sample 1960-19 1960-19 1980-16 2000-19 2000-19 1960-19 1960-19 1980-16 2000-19 2000-19
Monthly dummies v v’ v’ v’ v’ v’ v’ v v’ v’
Lagged asset return vol. v’ v v v v v’ v v’ v’ v
Lagged comm. return vol. v v v v’
Other controls; v’ v
AHMDA applications v v
AHMDA $ originations v’ v’
N 714 714 435 239 239 714 714 435 239 239
R? 0.469 0.469 0.474 0.568 0.567 0.370 0.370 0.444 0.506 0.507

B. Single-Family Units BPG Volatility
Asset Market: Equities Corporate Bonds
@ @ (©) 4 ®) ©) @) ® © (10)

oBPG 0.024*  0.024**  0.026" 0.047°* 0.046"* 0044 0.044"* 0.047°* 0.016** 0.016"*

(2.48) (2.41) (2.29) (2.66) (2.62) (4.53) (4.36) (4.44) (3.60) (3.60)
Time sample 1960-19 1960-19 1980-16 2000-19 2000-19 1960-19 1960-19 1980-16 2000-19 2000-19
Monthly dummies v v v v v v v v’ v v
Lagged asset return vol. v v v v v v’ v v v v
Lagged comm. return vol. v v’ v’ v
Other controls; v’ v’
AHMDA applications v’ v
AHMDA $ originations v’ v’
N 714 714 435 239 239 714 714 435 239 239
R? 0.468 0.468 0.475 0.571 0.570 0.390 0.390 0.467 0.508 0.508

Notes: The table presents estimates from equation (4.3) relating total return volatility to lagged building permit growth
(BPG) volatility implied by a GJR-GARCH model. In Panel A we use total private residential permits as the quantity
measure Qs, but instead use permits attached to single-family units in Panel B. All columns include a full set of
monthly dummies and the asset return volatility lagged by one month. We include a BIC-optimal number of lags for
each specification with control variables, for which we obtain a lag order of p = 1. We include in columns 3 and 8 a set
of controls for other macroeconomic observables directly related to BPG volatility, which might also drive aggregate
financial market volatility. This vector of other controls corresponds to those used in Table 2. Lagged commodity return
volatility refers to the GARCH-implied volatility obtained from the commodity excess return index constructed by
Janardanan et al. (2024). To control for monthly growth in mortgage credit demand based on applications, or growth
in equilibrium credit supply based on originated mortgages, we append nationwide totals provided by Neil Bhutta
using an aggregated version of the confidential Home Mortgage Disclosure Act (CHMDA) data, downloadable at:
https://sites.google.com/site/neilbhutta/data. The CHMDA data are only available starting in January 1994.
We include both for-purchase and refinancing loan growth rates as separate variables in the regressions. We include
a BIC-optimal number of lags for each specification with control variables, for which we obtain a lag order of p = 1.
t-statistics obtained from Newey-West standard errors where we select for each specification the minimum lag order
such that the estimator for the covariance matrix is consistent. ***p < 0.01,**p < 0.05,*p < 0.1.
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average leverage ratio for each state. That is, we compute:

Levemges,t _ ZiES (dltti,t + dlCi,t) (Dl)

ZiES sedit

where dltt is total long-term debt outstanding, dlc is debt in current liabilities, and seq refers
to total parent stockholders’ equity. To assign each firm to its HQ state, we splice the list
of COMPUSTAT HQs matched to a gvkey from Bai et al. (2020) covering 1969 — 2003 to an
annex file provided by Gao et al. (2021) for 2004 to 2022. The latter set of authors created the
annex file by scraping SEC 10-K filings to collect the business address over the later period.
The HQ state is distinct from the state of incorporation, which is Delaware for the majority
of firms. We use the HQ state to proxy for location because it reflects the largest fraction of
tirms” physical resources and business operations.

Gao et al. (2021) report that based on SEC filings, between 1995 and 2018, 2% to 3% of
COMPUSTAT firms change their HQ state each year. Given the low probability of year-to-year
cross-state changes to the HQ location, we fill in missing values for state HQs within each firm’s
history by carrying forward and backcasting for firms which have only ever listed a single
HQ state in their available SEC filings; we do not fill in missing locations for firms which
ever change their HQ state.!? After filling in missing values, we then collapse to a state-level
panel of leverage ratios according to (D.1). For nine observations in AK, NM, and WY, reported
seq is negative due to a small number of firms with HQs located in those state-years; we set
those leverage observations to missing. We then winsorize leverage ratios at the 1st and 99th
percentile across the entire panel to minimize the role of measurement error arising from a
combination of missing values for the firm balance sheet variables in (D.1) and a small number
of firms with headquarters in less-populated states. For including leverage ratios as a control
in equation (4.4), we consider the leverage ratio to be as of the start of the following year, in
keeping with the majority of firms’ fiscal year end dates. Hence, the variation due to leverage
is concentrated in the turnover from December to January; monthly dummies account for any
base month effects that this convention creates.!!

State-level corporate leverage is pro-cyclical, with large spikes in leverage observed on the eve
of the Global Financial Crisis. There is high degree of geographic dispersion in leverage ratios
that widens following recessions. For instance, the average annual standard deviation in state
leverage ratios is 0.27, compared to 0.44 in 2002, 0.38 in 1991, and 0.37 in 2009.

Figure D.3 plots the estimated predictability of BPG volatility from the GJR-GARCH
specification in equation (C.3), but including interpolated monthly population growth and annual
state-level corporate leverage ratios as controls for local housing demand. We use GJR-GARCH
for this exercise because the distribution of BPG residualized on leverage and population growth
is more skewed than unconditional BPG. Comparing Figure D.3 to Figure C.2, we find the
predictability of BPG volatility for asset return volatility is attenuated for the aggregate U.S.
and most states, but the ordinal ranking of states according to their cumulative 12-month
predictability coefficients is similar after conditioning on housing demand factors.

19While we could also carryback the state HQ location within each gvkey to 1960 when COMPUSTAT coverage
starts, this results in erroneously high leverage ratios > 2 for several small states in the early 1960s due to missing
values for shareholder equity. Hence, we start our sample in 1969 when the Bai et al. (2020) state HQ file begins.

1 Alternatively, we could apportion leverage monthly using the fiscal year end date. This is feasible for states
with a large number of corporate headquarters (e.g., New York), but would still require us to interpolate many
state-month-year observations. 67% of COMPUSTAT firms adopt the calendar year as their fiscal year.
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E CoMPLETION RATES: EVIDENCE FROM BUILDING PERMIT MICRODATA

In this section, we analyze building permit completion rates using microdata provided by
CoreLogic through their Building Permits product. The dataset contains detailed information on
individual residential building permits across the United States, tracking the status of permits
from issuance to completion. We observe permit-level data for 48 states and the District of
Columbia. Alaska and Mississippi are excluded from our analysis as their non-disclosure laws
prevent access to building permit records. While several other states have non-disclosure laws
for real estate transactions (Idaho, Kansas, Louisiana, Missouri, Montana, New Mexico, North
Dakota, Texas, Utah, and Wyoming), CoreLogic maintains comprehensive permit records for
these jurisdictions through direct relationships with local town planning departments.

We isolate permits for new residential construction to align the CoreLogic sample with permits
counted towards the Census Building Permits Survey. In particular, we map CoreLogic permits to
the Census survey categories: permits related to the construction of 1-unit, 2-4 unit, and > 5-unit
properties. To do so, we identify new construction permits using project type indicators provided
by CoreLogic and then parse the land use description string from the county tax assessment
records to sort permits into bins by the number of residential units. For instance, we sort new
home construction permits with a “duplex" or “quadplex" description into the 2-4 unit category.

CoreLogic Building Permits provides the state and county land use descriptions as of the date
the permits database was last updated. For example, consider a single-family home construction
permit issued in 2010 and completed in 2011. If that property is then subsequently converted to
office space, then filtering based on the land use description will cause us to drop this observation
from our sample even though it pertains to a single-family unit in 2010. To address this possible
issue, we merge Building Permits to CoreLogic Tax using the assessor’s parcel number (APN)
and parcel’s location. CoreLogic Tax contains annual tax year histories of property characteristics
for all parcels, including the land use descriptions as of each year. We then use the land use
descriptions as of the tax year corresponding to the permit effective date to sort permits into
residential vs. non-residential uses and by the number of housing units.

Figure E.1 summarizes building permit unconditional completion rates for new single-family
homes in a stylized map. Coastal states, which typically have more stringent land use regulations,
tend to have lower completion rates (depicted in lighter-shaded quintiles), particularly in the
Northeast. For instance, states in New England and the Tri-State Area fall into the lower
completion rate quintiles. In contrast, several states in the Southeast and Mountain regions,
which generally have fewer land use restrictions, exhibit higher completion rates (darker shades);
notable examples of lax regulation states include North Carolina, South Carolina, and Colorado,
which all fall in the highest completion rate quintiles. The pattern suggests a negative relationship
between regulatory burden and permit completion rates, though this relationship is not uniform
across all states. For example, California, despite its stringent land-use regulations, maintains
moderate completion rates, possibly due to other factors such as strong market demand and
established development processes.

Figure E.2 depicts how regulatory and physical constraints on new housing supply relate
to permit completion rates in the cross-section of states. We compare 12-month and 24-month
unconditional completion rates for new residential units, the x-axis in each bivariate map scale,
to a constraint measure on the y-axis of the bivariate scale. Darkly-shaded states are ones for
which a land use constraint measure is greater, while those shaded more red have greater
completion rates. Both regulatory constraints, measured by either the Wharton Index (Gyourko
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FIGURE E.1. Single-Family Building Permit Unconditional Completion Rates by State, 2012-2022
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Notes: The map shows building completion rates for new single-family homes from CoreLogic, depicted in a stylized
map of the United States. Each state is represented in an equal-sized rectangle to allow for a clearer visualization.
Building completion rates vary significantly across states, with states categorized by their unconditional completion
rate quintiles. White cells with borders indicate non-disclosure states (AK, MS) where permit completion data is
unavailable in most jurisdictions.

et al., 2008) or the Al-based index component identify minimum lot size requirements (Bartik
et al., 2024), and physical constraints based on topography or pre-existing development (Lutz
and Sand, 2023), are associated with lower short-term completion rates and therefore longer
time-to-build and greater project failure rates.!?

2Minimum lot size requirements are a binding constraint on the decision to build single-family homes and
small multi-family properties (Kulka et al., 2023). Developers’ decisions to build certain kinds of large multi-family
and commercial properties are instead more likely to be dictated by maximum floor-to-area (FAR) ratio or height
restrictions in non-residential zones of a city (LaPoint, 2021) For this reason, we compare this type of regulation to
single-family unit permits rather than multi-family ones.
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FIGURE E.2. Unconditional 12-Month and 24-Month Completion Rates for Residential Permits by State
and Land Use Constraints, 1990-2022

A. 12-Month Rates by WRLURI B. 24-Month Rates by WRLURI

E. 12-Month SFH Rates by Min. Lot Size F. 24-Month SFH Rates by Min. Lot Size

Notes: Each panel shows a bivariate heat map summarizing how 12-month (left-hand side) or 24-month (right-hand
side) unconditional completion rates on residential building permits in each state vary with different measures of local
constraints on new construction. We compute completion rates by counting the number of permits with time between
permit effective date and the date when the permit’s status was updated to “completed" of less than 12 or 24 months,
and dividing by the number of permits issued in the CoreLogic Building Permits data. States depicted in white are
ones where one of the measures is missing. Darkly-shaded states are ones where the land use constraint measure is
greater, while states in deeper red shades have greater completion rates. Panels A and B compare completion rates to
the earlier version of the Wharton Residential Land Use Regulatory Index (WRLURI) of Gyourko et al. (2008) based on
surveys of local governments conducted in 2005. Panels C and D tabulate completion rates against the buildable land
share of Lutz and Sand (2023), which refines the earlier land use availability measures of Saiz (2010) by using satellite
imagery within a geographic polygon as of 2001 and accounting for existing construction and parks. We aggregate up
the buildable land measure from the zip code to the state level by taking the ratio of the sum of buildable land divided
by the sum of available land across all zip codes within the state. Panels E and F restrict to new single-family home
(SFH) permits and tabulate completion rates against population-weighted average minimum lot size requirements,
aggregated from the municipality to the state level, obtained from the generative Al-based index of Bartik et al. (2024).
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