# FLIP OR FLOP? TOBIN TAXES IN THE REAL ESTATE MARKET

Chun-Che Chi $^\dagger$ 

Cameron LaPoint<sup>‡</sup>

Ming-Jen Lin $\,^{\S}$ 

<sup>†</sup>Academia Sinica

<sup>‡</sup>Yale SOM

<sup>§</sup>National Taiwan University

November 27, 2021

#### MOTIVATION: TAXES AND HOUSING AFFORDABILITY

- Rising housing unaffordability in major global RE markets has led to proposals to tax arms-length transactions
- How to target speculators while minimizing efficiency losses?
  - Non-residents/second homes: based on where tax bill gets sent
  - Vacancies: higher rate if vacant > 6 months of tax year
  - Flippers: higher tax rate for short-term sales (Tobin tax)
- What are the potential efficiency losses?
  - ▶ Emphasis on demand instead of inventory or capital "lock-in" effects
  - Theoretically ambiguous whether prices/volatility go up or down!

## What we do

- First paper to quantify optimal flip tax in the RE market
  - Extend sufficient statistics formulas derived for financial transaction taxes (FTTs)
  - Add in investors' housing tenure choices, rental risk, and search costs
- Empirical setting: tax surcharge on short-term sales of second homes in Taiwan
  - ▶ Flippers pay 15% on sales within 1 year, 10% if within 2 years
- This tax did not work as policymakers intended
  - Overall muted neg. effects on prices and volatility
  - Tax prevents trades even at longer horizons (unraveling)
- Punchline: Tobin taxes struggle to redistribute housing wealth and improve affordability due to market segmentation and lock-in effects

#### OUR EMPIRICAL APPLICATION IN ONE PICTURE



#### OUR CONTRIBUTIONS

#### **Optimality of transfer taxes on second-homes**

- ► Key parameters: drop in sales volume and *ex ante* noise trading share
- ▶ Administrative data ⇒ can estimate model-implied regressions to recover optimal taxes on specific groups of investors (renters, owner-occupiers, landlords)
- **(D)** Share of noise trading ightarrow spatial/time variation in typhoon severity
  - Idea: persistently bad weather induces speculators to forgo flips
  - On top of this, clean setting and comprehensive data to quantify...
    - Price/quantity effects of targeted tax on property flips
      - $\star\,$  Tax stays in place for 4 years rather than being constantly tweaked
    - Heterogeneity in tax-adjusted holding period returns (<u>net</u> cap gains + <u>net</u> income)

## Optimal Real Estate Tobin Tax Framework

## Optimal Tobin taxes: executive summary

- Two ways to think about how to set optimal (linear) transfer tax w/biased beliefs
  - **(**) Beliefs approach: set  $\tau^*$  to eliminate gap in avg. expected returns between buyers/sellers
  - 2 Volume ("Pigouvian") approach: set  $au^*$  to tax away non-fundamental trading
- Under the volume approach optimal tax is non-fundamental share  $s_{NF}$  over volume semi-elasticity  $\epsilon=d\log V/d\tau$

$$\tau^* \approx \frac{s_{NF}\{\tau=0\}}{-d\log V/d\tau|_{\tau=0}} \tag{1}$$

- In our case semi-elasticity = -75%/15 p.p. = -5 (one-year flips)
- Hence, a 20% noise trading share  $\implies \tau^* = 0.04$ , or a 4% tax on very short-term second home flips (govt. taxed too much!)

#### OUR FRAMEWORK: EXTEND INTUITION TO HOUSING MARKET

- Basic building blocks from Dávila (2021) on financial Tobin taxes:
  - Equilibrium model of heterogeneous investors who differ in risk aversion and beliefs
  - One risk-free asset and one asset in fixed supply w/risky dividend (e.g. equities)
  - Planner cares about pricing efficiency and can only use linear taxes
- We add the following features to mimic microstructure of housing market:
  - Risky asset (housing) carries both price (capital gain) and rental (dividend) risk
  - **②** Cost H to consuming housing embeds rents/imputed dividends (Sinai & Souleles 2005)
  - **3** Asset demands X divide investors into renters (X < 1), owner-occupiers (X = 1), and landlords (X > 1)
- Similar math when buyers pay a search cost...we'll come back to this later

## HOUSING INVESTOR'S PROBLEM

- Investors *i* start with housing endowment  $X_{i,0}$ , pay tax  $\tau$  on trades in period 1, receive stochastic income  $Y_{i,2}$ , pay housing costs, and consume everything in period 2
- Lifetime consumption budget:

$$C_{i,2} = Y_{i,2} + P_2 \cdot X_{i,1} + \underbrace{P_1 \cdot (X_{i,0} - X_{i,1})}_{\text{realized cap gain}} \underbrace{-\tau \cdot P_1 |\Delta X_{i,1}| + T_{i,1}}_{\text{net tax bill}} - H_{i,2}$$
(2)

• Housing costs enter negatively for renters, but positively for owners

$$H_{i,2} = (1 - X_{i,1}) \cdot r_2$$
 with  $r_2 \sim_i N(\mu_i^r, (\sigma^r)^2)$  (3)

• We assume  $P_1 > 0$  is always positive, and  $P_2 \sim_i N(\mu_i^p, (\sigma^p)^2)$ 

#### HOUSING DEMANDS BY TENURE CHOICE

- Assume CARA utility with absolute risk aversion  $A_i$  for investor i
- Choose a housing scale  $X_{i,1}$  to max exp. utility, which yields a demand system:

$$\Delta X_{i,1}(P_1) = \begin{cases} \Delta X_{i,1}^+(P_1) = \frac{(\mu_i^p + \mu_i^r) - A_i \Omega_i - P_1(1+\tau)}{A_i \Omega} - X_{i,0} & \text{if } \Delta X_{i,1}^+(P_1) > 0 \text{ (buyers)} \\ 0 \text{ (no trade)} & \text{if } \Delta X_{i,1}^+(P_1) \le 0, \Delta X_{i,1}^-(P_1) \ge 0 \\ \Delta X_{i,1}^-(P_1) = \frac{(\mu_i^p + \mu_i^r) - A_i \Omega_i - P_1(1-\tau)}{A_i \Omega} - X_{i,0} & \text{if } \Delta X_{i,1}^-(P_1) < 0 \text{ (sellers)} \end{cases}$$

•  $\Omega_i$  and  $\Omega$  are variance-covariance terms which capture hedging needs

$$\Omega_{i} = \underbrace{Cov(Y_{i,2}, P_{2}) + Cov(Y_{i,2}, r_{2})}_{\text{fundamental risk}} + \underbrace{Cov(P_{2}, r_{2})}_{\text{affordability risk}} - (\sigma^{r})^{2} \qquad (4)$$

$$\Omega = (\sigma^{p})^{2} + (\sigma^{r})^{2} - 2Cov(P_{2}, r_{2}) \qquad (5)$$

#### Planner's problem with uniform tax rate $\tau$

- Govt. runs balanced budget (no revenue constraint)  $\implies$  lump-sum transfers  $T_{i,1}$
- Investor's certainty equivalent from the planner's perspective is given by:

$$\mathsf{CE}_{i}^{p}(\tau) = \left[ (\mu_{p}^{p} + \mu_{p}^{r}) - P_{1} - \Omega_{i} \right] \cdot X_{i,1}(\tau) + P_{1}(\tau) \cdot X_{i,0} - \frac{A_{i}}{2} \Omega \cdot (X_{i,1}(\tau))^{2} + \widetilde{T}_{i,1}(\tau) - \mu_{p}^{r}$$
 (6)

#### Lemma (sufficient statistics formula)

The optimal tax satisfies:  $\tau^* = \mathrm{argmax}_\tau \int C E^p_i(\tau) dF(i)$  , which recovers the formula

$$\tau^* \approx \frac{s_{NF}\{\tau=0\}}{-d\log V\{\tau=0\}/d\tau}$$

Importantly, this expression does not depend on what the planner considers to be the "correct" set of beliefs  $\mu_p^p + \mu_p^r$ .

#### Allowing for group or investor-specific taxes

• Investors self-select into 4 groups based on their housing positions  $\Delta X$ :

 $\left\{ \begin{array}{ll} X_{i,1}^{-}(\tau_i') < X_{i,0} \leq 1 & \text{renter-seller (RS)} \\ \max\{1, X_{i,1}^{-}(\tau_i')\} < X_{i,0} & \text{landlord-seller (LS), or "flippers"} \\ X_{i,0} \leq \max\{1, X_{i,1}^{+}(\tau_i')\} & \text{renter-buyer (RB)} \\ 1 < X_{i,0} < X_{i,1}^{+}(\tau_i') & \text{landlord-buyer (LB)} \end{array} \right.$ 

• Taxes targeting individual investors are increasing in optimism  $(\mu_i^p + \mu_i^r)$ :

$$\tau_i^* = \frac{sgn(\Delta X_{i,1}) \cdot (\mu_i^p + \mu_i^r - \Upsilon)}{P^*}$$
(7)

- Market-clearing price  $P^*$  satisfies  $\int \Delta X_{i,1}(P^*) dF(i) = 0$  (Pricing effects)
- To calibrate we set  $\Upsilon=\mu_p^p+\mu_p^r\implies$  investors own developers who supply housing

## EMPIRICAL APPLICATION: FLIP TAXES IN TAIWAN

#### TAIWAN'S TRANSFER TAX EXPERIMENT

- Govt. worried about rapid price gains in Taipei area in 2008-11
  - Announce surcharge on short-term second home flips in January 2011
  - Reasoning: pre-existing tax rates very low on short-term sales
  - Implemented June 1, 2011 to December 31, 2015
- Sellers pay tax surcharge rate  $\tau$  as function of holding period T:

$$\tau = \begin{cases} 15\% & \text{if } T < 1\\ 10\% & \text{if } 1 \le T < 2\\ 0\% & \text{if } T \ge 2 \end{cases}$$
(8)

• Only applies to arms-length transactions (housing or commercial)

# Small drop ( $\approx 7\%$ ) in HPI around reform date



#### TAX DATA AND TRANSACTION RECORDS

- Four main datasets from Ministry of Finance (2006-16)
  - $\blacksquare$  Building property tax records  $\rightarrow$  owner-occupied status, property use, number of houses owned by taxpayer
  - 2 Deed tax records  $\rightarrow$  buyer/seller identifiers, transaction dates, appraised values
  - **\bigcirc** Personal income tax returns  $\rightarrow$  buyer/seller address, rental income, gifts/inheritances
  - **(**) Personal wealth estimates  $\rightarrow$  vehicles, equities, bonds, deposits
- Merge with a newly compiled database of market prices and rents from public records and compute coordinates (2000-16)
- $\bullet$  Listings data from an anonymous (large) realty firm  $\rightarrow$  time on market



### NO CLEAR DISCONTINUITY IN SALE PRICES



- Notably much lower variance in sales prices after the reform
- Similarly, no clear break in unit prices either

Grandfathered Unit price Salience

• Segmentation: price drop concentrated in low end of the market where cap gain  $<<\Delta\tau$ , but price hike at high end



#### BUNCHING: DEFINING A COUNTERFACTUAL

- Goal: compute number of sales prevented by the tax
- Two common approaches in the literature inappropriate here:
  - Use the distribution by holding period in the pre-reform period Pre-reform dist.
  - Estimate local polynomial using data in the post-reform period in an "unaffected region" away from the notches
- Problem: tax changes sales composition even far from the notches
  - ► Delaying a sale today affects sales volume tomorrow, and the next day, etc.
- Solution: compute what the distribution would have looked like, conditional on property amenities in available housing stock

#### AN HEDONIC-LOGIT MODEL OF FLIPS

• Use pre-reform property characteristics to estimate a logit model for sale probability  $f_{i,t}$ :

$$f_{i,t} = \Pr\left(y_{i,t} = 1 | \mathbf{X}_{\mathbf{i},\mathbf{t}}, \delta_t, \beta\right) = \frac{1}{1 + \exp(-\delta_t - \beta' \cdot \mathbf{X}_{\mathbf{i},\mathbf{t}})}$$
(9)

$$y_{i,t} = \mathbb{1}\{\delta_t + \beta' \cdot \mathbf{X}_{i,t} + \epsilon_{i,t} > 0\}$$
(10)

• Compute predicted prob.  $\widehat{f}$  in post-reform period with  $\widehat{\beta}'$  and integrate over properties within holding period bin j

$$\widehat{q}_j = \sum_{i=1}^{N_j} \widehat{f}\left(\mathbf{X}_{i,t}; \ \widehat{\delta}_t, \widehat{\beta}\right)$$
(11)

• Identifying assumption: w/o tax reform market would have priced amenities in  $\mathbf{X}_{i,t}$  in the same way as in pre-reform period  $$\mathsf{Pre-trends}$$ 

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

#### CHECK: HEDONIC-LOGIT FIT TO PRE-REFORM DATA



## Market unraveling: $\approx 33,000$ total missing sales



### Semi-elasticity stable across models

|                          | (1)         | (2)          | (3)          | (4)            | (5)          | (6)          | (7)           |
|--------------------------|-------------|--------------|--------------|----------------|--------------|--------------|---------------|
|                          | Full sample | Full sample  | Full sample  | Full sample    | Full sample  | $Age \geq 5$ | $Age \geq 10$ |
| $\epsilon_{1-year}$      | 4.8         | 4.7          | 4.7          | 5.1            | 6.3          | 7.7          | 6.8           |
| $\epsilon_{2-year}$      | 4.8         | 4.7          | 4.7          | 3.7            | 6.8          | 9.2          | 7.5           |
| $\Delta mass_{<720}$     | 71,411      | 70,977       | 70,961       | 69,159         | 85,762       | 69,407       | 57,087        |
| $\Delta mass_{\geq 720}$ | -28,488     | -28,568      | -28,592      | <b>-36,020</b> | -25,888      | -12,946      | -16,091       |
| $\Delta mass_{<365}$     | 31,156      | 30,855       | 30,827       | 33,546         | 41,455       | 35,966       | 29,088        |
| $NW^B, NW^S$             |             | $\checkmark$ |              |                |              |              |               |
| $HNW^B, HNW^S$           |             |              | $\checkmark$ |                |              |              |               |
| Material, Use, Month FE  |             |              |              | $\checkmark$   | $\checkmark$ | $\checkmark$ | $\checkmark$  |
| Realty dummy             |             |              |              |                | $\checkmark$ |              |               |
| Ν                        | 12,163,977  | 12,163,977   | 12,163,977   | 12,163,977     | 11,939,191   | 8,281,861    | 7,171,456     |

Notes: All logit models include floor number, floor area, total floors in the unit, and quadratics in holding period length and age.

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

## Who are the noise traders here?

- Literature: non-residents earn lower (gross) capital gains
  - Non-residents often used as a synonym for "misinformed" speculators (Chinco & Mayer 2016) or bad bargainers (Cvijanović & Spaenjers 2021)
- But are speculators also noise traders?
- We compute total tax-adjusted holding period returns and show... Details
  - Only after tax reform do locals earn premium when selling to OOT buyers
  - Annualized HPRs decline linearly with wealth
  - Sellers of mortgaged properties earn similar capital gains
  - Stock market participants earn <u>lower</u> returns
  - **O** Term structure of realized returns is downward sloping, and tax flattens the curve

#### Noise trading: gone with the $\overline{\text{wind}}$ rain

- Idea: severe typhoon season raises cost of listing and selling properties
  - Fundamental traders: people who persist with sale due to family/work commitments even when weather limits outdoor activity
  - Inspired by literature on weather effects on economic activity
- Season runs from July to September, but severe storms also possible in June and October
  - > On average, Taiwan experiences 5 typhoons per year, with 2 making direct landfall
  - ▶ Classification relies on wind speed  $\geq$  118 km/h (74 mph)  $\implies$  typhoon Classification
  - Accompanied by low air pressure and significant rainfall
- We find volume declines by 15-20% during severe storm seasons, with little evidence of pent-up demand in the following months

#### HEAVY RAIN REDUCES AGGREGATE SALES VOLUME

 $Volume_t = \beta \cdot (Weather_t \times Summer_t) + \delta_t + \gamma' \cdot \mathbf{X_t} + \varepsilon_t$ 

|                                                    | (1)          | (2)           | (3)           | (4)           | (5)            | (6)           |
|----------------------------------------------------|--------------|---------------|---------------|---------------|----------------|---------------|
| $Max \ WS \ \times Summer$                         | $-2.27^{**}$ |               | -1.16         |               |                |               |
| $Rainfall \times Summer$                           |              | $-0.32^{***}$ | $-0.26^{***}$ | $-0.31^{***}$ |                | $-0.24^{***}$ |
| $\mathbb{1}\left\{T>32^{\circ}C\right\}$           |              |               |               | 5.14          |                |               |
| $\mathbb{1}\left\{27 < T \leq 32^{\circ}C\right\}$ |              |               |               | 1.51          |                |               |
| $\mathbb{1}\{Max \ WS \ge 74mph\}$                 |              |               |               |               | $-65.98^{***}$ | $-27.49^{**}$ |
| $\mathbb{1}\{55 \leq Max\;WS < 74mph\}$            |              |               |               |               | $-10.88^{**}$  | -9.18         |
| 7-day FEs                                          | $\checkmark$ | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$   | $\checkmark$  |
| Day-of-week FEs                                    | $\checkmark$ | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$   | $\checkmark$  |
| Damages controls                                   | $\checkmark$ | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$   | $\checkmark$  |
| Ν                                                  | 1,973        | 1,973         | 1,973         | 1,973         | 1,973          | 1,973         |

• Typhoon-level rainfall shock  $\implies$  20% drop in sales volume in Greater Taipei metro

• Consistent with other papers: people don't like to do things in the rain!

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

22

#### VOLUME DOES NOT BOUNCE BACK AFTER RAIN SUBSIDES

 $Volume_{t} = \beta_{1} \cdot (Rain_{t} \times Summer_{t}) + \delta_{t} + \beta_{2} \cdot (\overline{Rain}_{t-L,t-1} \times Summer_{t}) + \gamma' \cdot \mathbf{X}_{t} + \varepsilon_{t}$ 

|                                              | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)           | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (4)           |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| $Rain_t \times Summer_t$                     | $-0.33^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-0.33^{***}$ | $-0.32^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $-0.32^{***}$ |
| $\overline{Rain}_{t-1w,t-1} \times Summer_t$ | -0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| $\overline{Rain}_{t-2w,t-1} \times Summer_t$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| $\overline{Rain}_{t-4w,t-1} \times Summer_t$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| $\overline{Rain}_{t-8w,t-1} \times Summer_t$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.83          |
| 7-day FEs                                    | <ul> <li>Image: A start of the start of</li></ul> | ~             | <ul> <li>Image: A start of the start of</li></ul> |               |
| Day-of-week FEs                              | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$  | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$  |
| Damages controls                             | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$  | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\checkmark$  |
| Ν                                            | 1,973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,973         | 1,973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1973          |

• Also, no pent-up demand even if very long and severe typhoon season



Chi, LaPoint, & Lin (2021)

## HOW WEATHER SHOCKS FIT INTO OPTIMAL TAX THEORY GO BACK

- Problem: weather reduces sales by crowding out noise trades + raising search costs for non-noisy traders
- Model this by adding stochastic search costs (e.g. weather) paid by buyers
  - This means that  $\hat{\beta}$  from weather shock regressions will generally yield  $\hat{s}_{NF} + error$
- In a special case of the model where investors have symmetric risk preferences  $A_i = A$ and Gaussian trading motives, search costs  $c_1/P_1$  enter linearly, and

$$\lim_{c_1/P_1 \to 0} \tau^* = \frac{\widehat{s}_{NF}\{\tau = 0\}}{-d \log V/d\tau|_{\tau = 0}}$$

• We estimate  $c/P \approx 0.36\%$  by looking at jump in time on the market around weather events then scaling by average daily wages  $\implies$  small downward correction to  $\tau^*$ 

## **OPTIMAL TAX CALIBRATION EXERCISES**

## Sufficient statistics $\implies$ uniform tax rate of 4%-5%

- Recall our sufficient statistics formula of  $\tau^* = -s_{NF} \{ \tau = 0 \} / \epsilon$ 
  - ► Semi-elasticity (ε) estimates from bunching design range from 4.8 5.1 for one-year flips, or 3.7 – 4.8 including two-year flips
  - ▶ Noise trading estimates fall between 15% 20% from the weather design
- Putting two pieces together yields  $3\% \leq \tau^* \leq 5\%$ 
  - Upward biased: logit model under-fits the pre-reform data, and weather shocks related to both non-fundamental trading and search costs
  - Using the revised sufficient statistics formula with c/P search costs leads to at most a 0.22 p.p. reduction in  $\tau^*$  Details
  - This range of  $\tau$  is at high-end of flat transfer rates in place in global markets

## FOOD FOR THOUGHT: WHO BEARS THE COSTS OF FLIP TAXES?



- Missing sales at holding periods

   2 years disproportionately from non-speculators who sell due to employment/marriage change [red]
   Levels
- Implies tax distorts household location choice
- Echoes mobility lock-in effects documented elsewhere (e.g. Hilber & Kyytikäinen 2017)

#### CALIBRATING INVESTOR-SPECIFIC TAXES

- Question: should we tax flippers and subsidize everyone else?
- Model admits regression relating housing demand and hedging needs to movements in the tax bill  $P_t \cdot \tau_{i,t}$ :

$$\widehat{\Omega} \cdot X_{i,t} + \widehat{\Omega}_i = \alpha_i \cdot P_t \times (1 + \mathcal{D}_{i,t} \cdot \tau_{i,t}) + e_{i,t}$$
(12)

where 
$$\mathcal{D}_{i,t} = \begin{cases} -1 & \text{if } X_{i,t} < X_{i,t-1} \quad \text{(sellers)} \\ 1 & \text{if } X_{i,t} > X_{i,t-1} \quad \text{(buyers)} \end{cases}$$

- $\widehat{\Omega}$  and  $\widehat{\Omega}_i$  are the empirical variance-covariance terms from our administrative tax data covering histories of incomes, prices, and rents
- Use time-variation in  $\tau_{g,t}$  to estimate the regression for each of the 4 groups  $g \in \{RS, LS, RB, LB\}$  to obtain vector of fixed effects  $\hat{\alpha}_i$  (Step-by-step)

## Optimal Tobin taxes impose 4%-5% rate on flippers

- Use renter-sellers (RS) as reference category and compute vector of tax rates for two versions of model:
  - Continuous scale (X is floor space):  $\{\widetilde{\tau}_{LS}^*, \widetilde{\tau}_{RB}^*, \widetilde{\tau}_{LB}^*\} = \widetilde{\tau}_{RS}^* + \{5.50\%, -0.09\%, -0.72\%\}$
  - $\begin{array}{l} \textcircled{\begin{subarray}{lll} \hline {\bf O} \\ {\bf f} \\ {\bf \tilde{\tau}}_{LS}^*, {\bf \tilde{\tau}}_{RB}^*, {\bf \tilde{\tau}}_{LB}^* \\ {\bf f} \\ {\bf \tilde{\tau}}_{RS}^* + \{ {\bf 4}.19\%, 0.33\%, 0.55\% \} \end{array}$ 
    - ★ Share vector  $\{s_{RS}, s_{LS}, s_{RB}, s_{LB}\} = \{16.75\%, 45.94\%, 14.49\%, 22.82\%\} \implies$  similar homeownership rates to U.S.
- Pricing counterfactuals: moving from the pre-existing tax regime to the optimal regime results in higher prices
  - $(\widehat{P} P)/P = 2.7\%$  for discrete calibration vs. 0.8% for continuous calibration
  - Mirrors pos. pricing effects we find in the RD analysis at high-end of market

#### CONCLUSION

- Introduce a new framework to estimate optimal Tobin taxes on housing
  - > Derive sufficient statistics formula with housing tenure choice, rental risk, search costs
  - Use model to estimate investor-specific optimal tax rates, show implied  $dP/d\tau > 0$
- We apply the model to the Taiwan RE market and show...
  - Targeting flips reduces volume, flattens term structure, but no overall drop in prices/volatility
  - Tax makes RE even less liquid (unraveling)
  - Govt. taxed way too much! ( $\tau^* = 4\%$  vs.  $\tau = 15\%$ )

#### • Related work in progress

- Macroprudential considerations: can we tax away leverage?
- Alternative policy instruments such as loan-to-value (LTV) limits

# THANK YOU!

## Appendix

## RELATED WORK MAIN DECK

- Speculators in the housing market
  - OOT shock: Chinco & Mayer (2016); Badarinza & Ramadorai (2018); Cvijanović & Spaenjers (2021); Bayer et al. (2020); Favilukis & Van Nieuwerburgh (2021)
  - Tax policy: Dachis, Duranton, Turner (2012); Besley, Meads, Surico (2014); Kopczuk & Munroe (2015); Suher (2016); Slemrod et al. (2017); Best & Kleven (2018); Deng, Tu, Zhang (2019); Gao, Sockin, Xiong (2020); Agarwal et al. (2020); Gorback & Keys (2020)
- Financial transaction taxes (FTTs) and excess volatility
  - Empirics: Umlauf (1993); Jones & Seguin (1997), Hau (2006); Foucault, Sraer, Thesmar (2011); Colliard & Hoffmann (2017); Deng, Liu, Wei (2018); Cai et al. (2020)
  - Theory: Tobin (1978); Kupiec (1996); Scheinkman & Xiong (2003); DeFusco, Nathanson, Zwick (2017); Vives (2017); Biais & Rochet (2020); Dávila (2021)
- Weather shocks to economic activity
  - Hirshleifer & Shumway (2003); Goetzmann & Zhu (2005); Goetzmann et al. (2014); Dell, Jones, Olken (2014); Cortés, Duchin, Sosyura (2016); Cho (2020)
# PRICING EFFECTS IN THE MODEL



- Sign of  $dP/d\tau$  is ex ante ambiguous in the model
- Implicit equilibrium pricing function:

$$P_{1} = \frac{\int_{i \in \mathcal{T}(P_{1})} \left(\frac{(\mu_{i}^{p} + \mu_{i}^{r})}{a_{i}} - A\left(\Omega_{i} + \Omega X_{0i}\right)\right) dF(i)}{1 + \tau \cdot \left(\int_{i \in \mathcal{B}(P_{1})} \frac{1}{a_{i}} dF(i) - \int_{i \in \mathcal{S}(P_{1})} \frac{1}{a_{i}} dF(i)\right)}$$
(13)  
where  $A \equiv \left(\int_{i \in \mathcal{T}(P_{1})} A_{i}^{-1} dF(i)\right)^{-1}$  and  $a_{i} = A_{i}/A$  (14)

- $\bullet$  Prices are inc. in expected payoff  $\mu^p_i+\mu^r_i$  and dec. in rental risk premium
- $dP_1/d\tau > 0$  if  $\int_{i \in B(P_1^*)} \frac{1}{a_i} dF(i) \le \int_{i \in S(P_1^*)} \frac{1}{a_i} dF(i)$ , or tax hike reduces owners' willingness to sell to such an extent that inventory goes down

DETAILS: SUFFICIENT STATISTICS FORMULA W/SEARCH COSTS (1)

• Keep the basic setup the same except now impose a proportional search cost  $c_1$  paid by buyers in period 1, so lifetime consumption is:

$$C_{i,2} = Y_{i,2} + P_2 \cdot X_{i,1} + P_1 \cdot (X_{i,0} - X_{i,1}) - \tau \cdot P_1 |\Delta X_{i,1}| + T_{i,1}$$

$$-c_1 \cdot (X_{i,1} - X_{i,0}) \times \mathbb{1}\{X_{i,1} > X_{i,0}\} - H_{i,2}$$
(15)

- Make symmetry assumption: traders have identical risk preferences  $A_i = A$  and symmetric distribution of beliefs, hedging needs, and initial endowments
- Then the new equilibrium price  $P = P^* c_1/2$ , with  $P^*$  the price without search frictions
- Introduce persistent shock to housing search costs (e.g. storms, or iBuyers):

$$c_t = z_t \cdot w_t$$
 and  $z_t \sim_i N(\mu_i^z, (\sigma^z)^2)$  (16)

$$w_t = \phi \cdot w_{t-1} + \varepsilon_t^w \tag{17}$$

Details: sufficient statistics formula w/search costs (2)

• Decomposition of trading volume into four components:

$$P_1V(\tau) = \underbrace{\Theta_F(\tau)}_{\text{fundamental}} + \underbrace{\Theta_{NF}(\tau)}_{\text{non-fundamental}} - \underbrace{\Theta_{\tau}(\tau)}_{\text{reduction due to tax}} - \underbrace{\Theta_{WS}(\tau)}_{\text{reduction due to weather}}$$
(18)

• Symmetry + Gaussian trading motives  $\implies$  changes to V due to  $\varepsilon_1^w$  are not due to changes in fundamental volume  $\Theta_F(\tau)$ , which leads to the lemma:

### Lemma (sufficient statistics with search costs)

The optimal tax satisfies:  $\tau^* = \operatorname{argmax}_{\tau} \int CE_i^p(\tau) dF(i)$ , which recovers the formula

$$\tau^* \approx \frac{s_{NF}\{\tau = 0\}}{-d\log V\{\tau = 0\}/d\tau} - \frac{1}{2}\frac{c_1}{P_1}$$

This does not depend on what the planner considers to be the "correct" set of beliefs.

Main deck

# DETAILS: OPTIMAL TAX ESTIMATES W/WEATHER SHOCKS

• We estimate regressions of the form:  $Volume_t = \beta \cdot Weather_t + \delta_t + \varepsilon_t^w \rightarrow \widehat{\beta}$ , where  $Weather_t$  is a typhoon shock

• We can show that 
$$\frac{\partial V}{\partial \varepsilon_1^w} = s_{NF}(\varepsilon_1^w) - \underbrace{s_{WS}(\varepsilon_1^w = 1)}_{\propto c_1/p_1}$$

- We estimate the cost c in days by running:  $TOM_t = \gamma \cdot Weather_t + \delta_t + \varepsilon_t^w$ , where TOM is time on market from listings data in pre-reform period
  - The highest  $\widehat{\gamma}$  we estimate is 21 days (3 week delay)
  - ▶ Translates to an opportunity cost in lost wages of roughly 0.36% of median home sale price
- Therefore, using the revised sufficient statistics formula, the optimal uniform  $\tau^*$  is only  $(0.36/2)/\epsilon + 0.36/2 = 0.216$  p.p. lower for  $\epsilon = 5$

STEP-BY-STEP GROUP-SPECIFIC TAX CALIBRATION (1)

- Main deck
- Compute the variance-covariance terms  $\widehat{\Omega}$  and  $\widehat{\Omega}_i$  using gross taxable income (from the tax returns), and index levels of home prices and rents
- Determine actual tax rates faced by each investor on sales before the transfer tax reform

   this includes stamp duty, land value increment, and local house transfer income taxes
- Estimate the model-implied regression using the investor-specific rates  $\tau_i$  from the previous step and the index levels  $P_t$ :

$$\widehat{\Omega} \cdot X_{i,t} + \widehat{\Omega}_i = \alpha_i \cdot P_t \times (1 + \mathcal{D}_{i,t} \cdot \tau_{i,t}) + e_{i,t}$$

Recover the investor fixed effects  $\hat{\alpha}_i$  from the above regression and set the free parameter  $\Upsilon = \mu_p^p + \mu_p^r$ , or the sum of mean prices and mean annual rents

Step-by-step group-specific tax calibration (2)

So Back out an estimate for the market-clearing price  $\widehat{P}$  under the optimal tax regime by rearranging the expression:

$$\sum_{i} \Delta \widehat{X}_{i} = \sum_{i} \Delta \left\{ \frac{-\widehat{A}_{i} \cdot \widehat{\Omega}_{i} - \widehat{P} + \Upsilon}{\widehat{A}_{i} \cdot \widehat{\Omega}} \right\} = 0$$

• We plug  $\widehat{P}, \widehat{A}_i, \widehat{\Omega}, \widehat{\Omega}_i$  into the demand system to retrieve counterfactual housing demand  $X_i(\tau_i^*)$  under the optimal tax rates  $\tau_i^*$  for each investor:

$$\mathsf{X}_{i,1}( au_i^*) = rac{-A_i \cdot \Omega_i - P^* + \Upsilon}{A_i \cdot \Omega}$$

- Sort investors into groups  $g \in \{RS, LS, RB, LB\}$  based on their housing positions  $X_i(\tau_i^*) X_{i,0}$ , where  $X_{i,0}$  is housing held at the beginning of the sample
- Separately run the model-implied regression for each group g, recover group-specific fixed effects  $\hat{\alpha}_g$ , and then plug back into optimal tax formula to obtain  $\tau_g^*$

# PROPERTY TRANSFER TAXES IN GLOBAL CONTEXT

- We collect tax parameters for top markets by investable RE stock
- Patterns in transfer tax regimes:
  - ▶ High tax rates (>3%) and holding period notches fairly rare
  - ▶ 19 out of the top 25 impose a flat tax ⇒ rate does not rise progressively with sale price (only 3 have no tax)
  - Legal incidence: about half impose on buyer, other half on seller
  - Rarely have a separate capital gains tax for RE
- Typical exemptions: inheritances/gifts (separate tax), refinancing, collateral, divorce, court orders

# Taxes in the top 10 RE cities + 4 Asian Tigers

|               | RE stock value | Transfer tax | Capital gains tax | Rate                   | Holding period notch | Incidence                       |
|---------------|----------------|--------------|-------------------|------------------------|----------------------|---------------------------------|
| Taiwan        | 254            | $\checkmark$ | ~                 | 10-15% (flat)          | √(both)              | Seller                          |
| Hong Kong     | 197            | $\checkmark$ | ×                 | 1.5-20% (progressive)  | ✓(buyer surcharge)   | Seller & buyer surcharge        |
| Singapore     | 217            | $\checkmark$ | ×                 | 0.33-16% (progressive) | ✓(seller stamp tax)  | Buyer & seller (separate rates) |
| South Korea   | 758            | $\checkmark$ | ×                 | 4.6% (flat)            | ×                    | Buyer                           |
| Tokyo         | 711            | $\checkmark$ | $\checkmark$      | 3% (flat)              | ✓(CGT)               | Buyer                           |
| New York      | 657            | $\checkmark$ | ×                 | 1-2.625% (flat)        | ×                    | Seller                          |
| Los Angeles   | 482            | $\checkmark$ | ×                 | 0.45% (flat)           | ×                    | Seller                          |
| Paris         | 342            | $\checkmark$ | ×                 | 0.71-6.41% (flat)      | ×                    | Seller                          |
| London        | 334            | $\checkmark$ | $\checkmark$      | 2-12% (progressive)    | ×                    | Buyer                           |
| San Francisco | 307            | $\checkmark$ | ×                 | 0.5-2.5% (flat)        | ×                    | Buyer                           |
| Chicago       | 300            | $\checkmark$ | ×                 | 1.05% (flat)           | ×                    | 70-30 buyer-seller              |
| Seoul         | 291            | $\checkmark$ | ×                 | 0.02-5% (flat)         | ×                    | Buyer                           |
| Osaka         | 288            | $\checkmark$ | $\checkmark$      | 3% (flat)              | ✓(CGT)               | Buyer                           |
| Houston       | 255            | ×            | ×                 | -                      | -                    | -                               |

Note: RE stock value in billions of USD. Progressive means rates rise with sale price.



# ESTIMATING INVESTABLE RE STOCK

• We use a rule of thumb applied in CRE investment firms to estimate and rank markets by the aggregate size of investable real estate: Main deck

Investable RE stock = 
$$0.45 \cdot \text{GDP} \times \left[ \left( \frac{\text{per capita GDP}}{27,800 \text{ USD}} \right)^{\alpha} \right]$$

- Based on observation that discontinuity in country-level RE investment flows occurs around 27,800 per capita GDP
  - Relationship is actually stronger at city-level for CBDs
  - Key assumption: long-run share of RE in aggregate physical capital stock is about 1/3
- Estimate for Taiwan:  $0.45 * 586, 104, 000, 000 \times (24, 828/27, 806)^{1/3} \approx \$253,973$  million
- Compared to the investment flow of \$111,425 million of all properties transacted in 2017

## DETAILS: HOW TO TRANSFER PROPERTY OWNERSHIP

- Buyer signs contract, pays 0.1% stamp duty tax, and a 5-10% contract fee (1 to 3 days)
- Seller files transaction tax return and waits for bill (7 to 21 days)
- Seller pays transaction and CG taxes, and any outstanding bills must be paid within 30 days after signing the contract
- Sellers files ownership transfer and pays stamp duty tax remitted to them by the buyer plus 0.1% flat fee (3 to 5 days)
- Suyer pays remaining balance on property and completes transfer
- We estimate finalizing a transfer takes 38 days at maximum
- Realty companies estimate average time on market of 90-115 days in the top six cities

Main deck

# PRE-EXISTING PROPERTY TAX BASES

- In addition to the surcharge on short-term flips, transfers subject to four other taxes:
  - Deed tax: buyers pay 6% of triennial appraisal value
  - Stamp duty tax: buyers pay 0.1% of appraised building value and annually assessed current land value
  - Substitution Control Contro
  - House transfer income tax: sellers pay a tax sale price which depends on a local scale factor (0.08 to 0.37) and personal income tax bracket
- In practice, for typical single-family home in Taipei, surcharge doubled the seller's total transfer tax bill

Main deck

# CALCULATING TAX BILLS: A SIMPLE EXAMPLE

- Mr. Lee sells his 125  $m^2$  second home in Taipei for 65 million NTD ( $\approx$  2.2 million USD) while the transfer tax surcharge is in effect
- $\bullet$  1.5 years ago Mr. Lee paid 170,000 NTD per  $m^2$  and the current land value (CLV) is 200,000 NTD per  $m^2$
- Land value increment tax: for holding period < 20 years, 20% tax rate on CLV less deductions for inflation and renovations  $\approx$  700,000 NTD
- House transfer income tax: Mr. Lee is in the top income tax bracket, so (0.4  $\times$  0.37) on 33.6 million NTD assessment  $\approx$  5 million NTD
- Transfer tax surcharge: 10% of 65 million NTD = 6.5 million NTD  $\implies$  the total tax bill increases from 8.7% of the sale price to 18.7%



### DETAILS: PERSONAL WEALTH ESTIMATES

- Wealth is the sum of all tangible (land + buildings + vehicles) and financial assets (cash + deposits + bonds + equities) Main deck
  - Real estate: separate procedure for land/building
    - \* Building appraisal values from property tax base, inflated up to market value using our indices
    - ★ Declared land value inflated up to market value using ratio of announced land value to transaction price reported by Local Land Office
  - Vehicles: MSRP for vehicle make/model from DMV registration, less accumulated depreciation (linear)
  - **③** Savings/deposits: personal interest income  $r \cdot s$  where r is aggregate interest income divided by deposits with all banks from the CB
  - Bond holdings: personal interest income on ST bonds + public debt + corporate bonds + bank debentures divided by avg. nominal rate across all bonds in TEJ Database
  - Equities: OTC stocks at face value, and publicly-traded stocks at closing price of annual ex-right date (July 31st if no dividends)

# CONSTRUCTING THE MATCHING ESTIMATOR INDEX

• Index comes from a hybrid repeat-sales/hedonic valuation model

$$\log P_{i,t}^c = \delta_t^c + \gamma_i^c + \beta^{c'} \cdot \mathbf{X_{i,t}^c} + \epsilon_{i,t}^c$$
(19)

$$P_t^c = \exp(\delta_t^c) \tag{20}$$

- Idea: limit the selection problem in repeat sales by defining  $\gamma_i^c$  as an "almost" repeat sale and use  $\mathbf{X_{i,t}^c}$  to control for small differences
- Matching estimator à la McMillen (2012) and Fang et al. (2015)
  - ► Assign unique panel id to half-block level (range of 30 house #'s)
  - ► X<sup>c</sup><sub>i,t</sub> includes polynomial of age, land and floor area accounts for rounding errors and differences in unit floor plans
  - Check bias as we move closer to defining  $\gamma_i^c$  as unique property

Main deck

# "Official" HPIS: STEEP GROWTH BUT NO REFORM EFFECT



# COMPARISON OF QUARTERLY HOUSING PRICE INDICES



• Selection bias problem: prices become more inflated as we adopt more stringent definition of repeat sales (Method 1  $\rightarrow$  Method 4) Main deck

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

## ALTERNATIVE: ESTIMATE TRANSLOG PRODUCTION FUNCTION

• Estimate annual depreciation rate using hedonic model with translog function of land and structure size To index

$$\log P_{i,j,t} = \alpha_0 + f(A, S, L, D) + \beta_1 \log S_i + \beta_2 (\log S_i)^2$$
$$+ \beta_3 \log L_i + \beta_4 (\log L_i)^2 + \beta_5 D_i + \beta_6 D_i^2 + \beta_7 D_i^3$$
$$+ \beta_8 \log S_i \times \log L_i + \beta_9 \log S_i \times D_i + \beta_{10} \log L_i \times D_i$$
$$+ \psi' \cdot \mathbf{X_{i,j,t}} + \gamma_j + \delta_t + \epsilon_{i,j,t}$$
$$f(A, S, L, D) = \alpha_1 A_i + \alpha_2 A_i \times \log S_i + \alpha_3 A_i \times \log L_i + \alpha_4 A_i \times \log D_i$$

• Alternatively, use piecewise linear function to see how marginal effects evolve with building age

$$f(A, S, L, D) = \sum_{g} \left[ \alpha_{1,g} \mathbb{1}_{g} + \alpha_{2,g} \mathbb{1}_{g} \times \log S_{i} + \alpha_{3,g} \mathbb{1}_{g} \times \log L_{i} + \alpha_{4,g} \mathbb{1}_{g} \times D_{i} \right]$$

TRANSLOG INDEX SHOWS MUTED GROWTH MAIN DECK

$$\log P_{i,j,t}^c = \alpha_0 + f(A, S, L, D) + \psi' \cdot \mathbf{X_{i,j,t}} + \gamma_j^c + \delta_t^c + \epsilon_{i,j,t}^c \quad \text{with } P_t^c = \exp(\delta_t^c)$$



# PRICE-RENT RATIOS WERE APPROACHING BUBBLE TERRITORY



• Greater Taipei area had similar trajectory to HK: PR ratio went from 20 to 30 (2009-11)

Main deck

# EVOLUTION OF QUALITY-ADJUSTED PRICES AROUND REFORM



- Residualize log prices on block FEs, day of week FEs, floor number (for apartments), # of floors (SFHs), quadratics in age, floor space, land area
- Clear upward pricing trend with no break around reform date
- No jumps in prices elsewhere in distribution when we look at assessed value quantiles ⇒ strong selection effects

### Almost complete pass through to owner-occupied segment



- Compare residualized prices for non-owner-occupied (taxed) vs. owner-occupied (not taxed) property sales
- Similar price rise across two segments ⇒ pass through from taxed to untaxed units (liquidity crunch)
- Same pattern when we look at prices by segment  $\times$  value quantiles

Main deck

# NO CLEAR DISCONTINUITY IN UNIT PRICES



• Clear reduction in unit price variance after the reform



# NO DISCONTINUITY AROUND THE GRANDFATHERED DATE



• Grandfathering: if flipped after implementation, tax still applies to anything bought after June 1, 2009 (Main deck)

# TAX REFORM HIGHLY SALIENT FOR FLIPPERS MAIN DECK



• Optimization frictions unlikely here - convergence to a new steady state within 6 months

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

# TREND BREAK FOR LOW-VALUE PROPERTIES



- Avg. sale prices in first quintile decline by ≈ 28% over 3 yrs.
- Inaction region: less likely to pay tax bill to flip an apartment w/low cap gain

# PRIME PROPERTY INVESTORS SELL AT PREMIUM TO EXPEDITE



• Within the top quintile of assessed values, prices jump by 10% (full pass through) around reform, then revert to trend Main deck

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

# TAXPAYERS BUY AND HOLD FOR TWO YEARS TO AVOID TAX

Pre-reform





Post-reform

Holding period (days)

Main deck

# PREDICTED SALES FUNCTION FLATTENS AFTER TAX



• Level shift: lower post-reform sale probability at each holding period Main deck

• Slope shift: weaker post-reform relationship between holding period and sale probability

# K-S tests of model fit to pre-reform data

|          | Baseline | Age < 5 | Age 5-10 | Age > 10 | 00Т   | non-OOT | $Q_1(NW_s)$ | $Q_3(NW_s)$ | $Q_5(NW_s)$ |
|----------|----------|---------|----------|----------|-------|---------|-------------|-------------|-------------|
| K-S stat | 0.105    | 0.149   | 0.090    | 0.149    | 0.105 | 0.119   | 0.149       | 0.119       | 0.075       |
| p-value  | 0.858    | 0.444   | 0.951    | 0.444    | 0.858 | 0.726   | 0.444       | 0.726       | 0.992       |

- Fail to reject the null of no difference in the distribution of sales by holding period for the CF model vs. data along several cuts:
  - Young vs. middle-aged vs. old properties new builds not playing a role in model fit
  - OOT vs. non-OOT sellers
  - By quantiles of seller net worth

Building age



#### Floor space



#### Distance to train station



Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

Building age



- Estimated AME of age Hold State - 95% confidence interval

#### Floor space



- Estimated AME of floor space 95% confidence interval

High-rise apartment dummy



-- Estimated loading on high-rise dummy 95% confidence interval

#### Land plot size



- Estimated AME of plot size 95% confidence interval

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

# HALF OF MISSING SALES FROM VERY LOW-WEALTH SELLERS

### Missing mass by seller's net worth quintile

|                 | ${\sf HP}$ $\leq$ 2 yrs. | HP > 2 yrs. | Net missing | % of total |
|-----------------|--------------------------|-------------|-------------|------------|
| First quintile  | 32,669                   | -17,999     | 14,670      | 44%        |
| Second quintile | 520                      | 137         | 657         | 2%         |
| Third quintile  | 4,958                    | -65         | 4,893       | 15%        |
| Fourth quintile | 11,999                   | -6,693      | 5,306       | 16%        |
| Fifth quintile  | 19,013                   | -11,400     | 7,613       | 23%        |
| Total           | 69,159                   | -36,020     | 33,139      | 100%       |



# Time on market $(TOM) \uparrow$ by a week after the tax

All listings



- Data: listings which close within 1-year window around the reform
- Definition: days between initial listing date and removal date
- $\bullet \approx 3$  p.p. drop in fraction of listings closing within a week driven by bottom of price distribution
- Increase in properties with very long TOM driven by top of price distribution Main deck

# HETEROGENEOUS EFFECTS ON TOM MIRROR THOSE FOR PRICES



- Avg. TOM grew by 7 days (Q1), 9 days (Q5), but by a statistically insignificant 3-4 days in the middle of the distribution Main deck
- Liquidity crunch worse for unique properties (Q5) and low cap gain apartments (Q1)

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

# Why didn't prices fall after the Tobin tax?

- Govt. enacted tax thinking it would help with housing affordability
- Main deck

- Demand for investment properties declined but so did supply
  - Even if demand shift dominates for some properties, price fall may not pass through to other segments (Stroebel, Piazzesi, Schneider 2020)
  - Critical then to understand <u>who</u> are the investors
- Standard disagreement model would say more price-sensitive investors are those with beliefs closer to fundamentals
- Do high housing wealth taxpayers extract sale premium to offset tax?
  - Problem: wealth is obviously endogenous to taxpayer outcomes
  - Solution: use windfall housing inheritances from decedents who <u>unexpectedly died</u> shortly before reform

### Empirical strategy: death and taxes

- Compute cumulative inheritances IW over k = 4 years prior to the reform
- Heirs anticipate inheritance (Bernheim, Shleifer, Summers 1985), so use untimely deaths
  - ► Decedent age 2 s.d. below average age at death (i.e. 47.35 y.o. or younger)
  - And/or sudden cause of death (e.g. heart attack, stroke, accident)
- 2SLS estimation: regress net worth on inheritance shock, then use pass through as measure of portfolio exposure to flip tax

$$Y_{i,t} = \alpha_2 + \beta_2 \cdot \left( NW_{i,\tau} \times Post_t \right) + \gamma' \cdot \mathbf{X}_{i,t} + \delta_t + \epsilon_{i,t}$$
(21)  
$$NW_{i,\tau} = \alpha_1 + \beta_1 \cdot \underbrace{\sum_{t=0}^{k} IW_{i,\tau-t}}_{\equiv NWShock_{i,\tau}} + \eta_i$$
(22)

• Exclusion: NWShock can only influence outcome Y through effect on seller's net worth

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes
# Seller's total IW delivers strongest shock

|                                        | (1)           | (2)           | (3)           | (4)           |
|----------------------------------------|---------------|---------------|---------------|---------------|
| $NWShock (\beta_1)$                    | $1.923^{***}$ | $0.562^{***}$ | 0.936***      | 0.929***      |
|                                        | (0.225)       | (0.171)       | (0.003)       | (0.009)       |
| First stage $Y 	imes Post$ ( $eta_2$ ) | $0.018^{***}$ | $0.013^{***}$ | $0.020^{***}$ | $0.020^{***}$ |
|                                        | (0.003)       | (0.004)       | (0.001)       | (0.001)       |
| First stage $Y$                        | $HNW^S$       | $NW^S$        | $ln(HNW^S)$   | $ln(NW^S)$    |
| IV                                     | $IHW^S$       | $IW^S$        | $ln(IHW^S)$   | $ln(IW^S)$    |
| Montiel Olea & Pflueger F-test         | 14.67         | 125.08        | 10,209.35     | 8,827.90      |
| Time & district FEs                    | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$  |
| Property controls                      | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$  |
| Adj $R^2$                              | 0.70          | 0.70          | 0.71          | 0.71          |
| Ν                                      | 182,646       | 182,646       | 22,914        | 27,078        |

- Focus on shock to sellers to isolate shift in the supply curve
- $\bullet$  Preferred estimate: \$0.56 of every \$1 inherited passes through to seller's net worth

Chi, LaPoint, & Lin (2021)

# WEALTHY SELLERS PASS THROUGH TAX HIKE TO BUYERS

|                                | (1)                       | (2)                                                    | (3)                                                    | (4)                                                    | (5)                       | (6)                                                    |
|--------------------------------|---------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------|--------------------------------------------------------|
| $NW^S \times Post$             | $0.0003^{**}$<br>(0.0001) | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $\begin{array}{c} 0.0097^{**} \\ (0.0032) \end{array}$ | $\begin{array}{c} 0.0130^{**} \\ (0.0043) \end{array}$ | $0.0129^{**}$<br>(0.0043) | $\begin{array}{c} 0.0129^{**} \\ (0.0047) \end{array}$ |
| Estimation                     | OLS                       | 2SLS                                                   | 2SLS                                                   | 2SLS                                                   | 2SLS                      | 2SLS                                                   |
| Montiel Olea & Pflueger F-test | _                         | 127.56                                                 | 125.37                                                 | 125.08                                                 | 336.06                    | 177.51                                                 |
| Property controls              | $\checkmark$              |                                                        | $\checkmark$                                           | $\checkmark$                                           | $\checkmark$              | $\checkmark$                                           |
| Time & district FEs            | $\checkmark$              |                                                        |                                                        | $\checkmark$                                           | $\checkmark$              | $\checkmark$                                           |
| Clustering                     | $district^P$              | $district^P$                                           | $district^P$                                           | $district^P$                                           | $district^S$              | $district^B$                                           |
| Adj. $R^2$                     | 0.67                      | 0.01                                                   | 0.09                                                   | 0.69                                                   | 0.69                      | 0.69                                                   |
| Ν                              | 182,646                   | 183,007                                                | 182,660                                                | 182,646                                                | 180,256                   | 179,634                                                |

- Sale price increases by 1% for every 1 million NTD ( $\approx$  35k USD) increase in seller's net worth (extensive  $\times$  intensive margin effect) Main deck
- Or, 1 s.d.  $\uparrow$  in inherited wealth  $\implies$  seller charges 9.3%  $\uparrow$  relative to pre-reform period

# HIGH HW TAXPAYERS SELL OFF RIGHT BEFORE REFORM HITS



1% ↑ in sudden IHW ⇒ 0.3 p.p. ↑ in sale probability in announcement month and 0.5 p.p. ↑ just prior to implementation

Chi, LaPoint, & Lin (2021)

DETAILS: HOLDING PERIOD RETURN FORMULAE

$$r_{t}^{j} = \frac{\sum_{i=1}^{n} (1 - \tau_{i,t}) \cdot \widetilde{V}_{i,t}^{j} + (1 - c_{i,t}^{j}) \cdot Y_{i,t}^{j} - T_{t-1,t}^{j}}{\sum_{i=1}^{n} \widetilde{V}_{i,t-1}} - 1$$
$$\widetilde{V}_{i,t} = (1 - \delta) \cdot V_{i,t-1} \times \frac{\widehat{P_{i,t}}}{\widehat{P_{i,t-1}}}$$

- $\widetilde{V} \rightarrow$  current market value, defined as either the sale price within filing year t, or the last observed sale price inflated up using our MSA-level index  $\widehat{P}$  (Main deck)
- $\tau \rightarrow$  taxes triggered by property sale ( $\tau = 0$  if no sale occurs at t)
- $\bullet\ T \to$  property holding taxes, usually proportional to assessed values
- $\delta \rightarrow$  linear rate of depreciation between t-1 and t (2% for SFH or 3% for apartments)
- $c_{i,t} \rightarrow tax$  rate on rental income Y less any mortgage interest deductions

# Fact #1a: locals extract premium from OOT buyers (Main deck

Local buyer OOT buyer Difference

| OOT seller   | 11.43%  | 12.89%  | 1.46*** |
|--------------|---------|---------|---------|
| Local seller | 14.99%  | 16.98%  | 1.99*** |
| Difference   | 3.56*** | 4.09*** | 0.53*** |

- Local sellers always earn a premium relative to OOT sellers
- Local premium is 0.53 p.p. higher for sales to OOT buyer

Chi, LaPoint, & Lin (2021)

# Fact #1B: Tax wedge between local and OOT returns main deck

Pre-reform Post-reform Difference

| OOT seller   | 25.18% | 8.71%   | $-16.47^{***}$ |
|--------------|--------|---------|----------------|
| Local seller | 23.43% | 14.19%  | $-9.24^{***}$  |
| Difference   | -1.75  | 5.48*** | 7.23***        |

• Statistically no difference in pre-reform annualized HPRs for local or OOT investors

• Tax creates a wedge of 7.23 p.p. between local and OOT sellers

Chi, LaPoint, & Lin (2021)

# FACT #1C: LOCAL PREMIUM EXISTS WITHIN METRO AREA MAIN DECK

Pre-reform Post-reform Difference

| OOT seller   | 22.06% | 8.13%   | -13.93*** |
|--------------|--------|---------|-----------|
| Local seller | 25.98% | 16.30%  | -9.68***  |
| Difference   | 3.92** | 8.17*** | 4.25***   |

- Local premium exists if define local to be at neighborhood level (OON)
- Suggests investment activity may reflect an urban-suburban divide

Chi, LaPoint, & Lin (2021)

#### Pre-reform

#### **Post-reform**

|              | Local buyer | OOT buyer | Difference |              | Local buyer | OOT buyer | Difference   |
|--------------|-------------|-----------|------------|--------------|-------------|-----------|--------------|
| OOT seller   | 25.06%      | 25.17%    | 0.11***    | OOT seller   | 7.96%       | 9.37%     | $1.41^{***}$ |
| Local seller | 23.16%      | 24.09%    | 0.93***    | Local seller | 13.42%      | 15.69%    | $2.27^{***}$ |
| Difference   | -1.90       | -1.08     | 0.82       | Difference   | 5.46***     | 6.32***   | 0.86***      |

•  $\Delta DDD$  estimate = 0.86 - 0.82 = 0.04 (p-value = 0.98)

# FACT #2: HPRs decline with wealth quintile main deck

Annualized holding period return (%): by wealth quintile

|                 | $\mu_{HPR}$ | $P_{50}^{HPR}$ | $\sigma_{HPR}$ | Ν     |
|-----------------|-------------|----------------|----------------|-------|
| First quintile  | 28.01       | 4.83           | 108.04         | 9,881 |
| Second quintile | 25.06       | 3.55           | 104.84         | 9,819 |
| Third quintile  | 21.28       | 3.48           | 92.25          | 9,850 |
| Fourth quintile | 19.47       | 2.68           | 93.15          | 9,850 |
| Fifth quintile  | 18.33       | 1.60           | 89.66          | 9,849 |

• Goes against idea in literature that novices with less housing wealth perform worse in flipping properties

# Fact #3: mortgaged sellers earn similar capital gains

MAIN DECK

| Year | Investor type      | $\mu_{HPR}$                                 | $\mu_{capital}$                               | $\mu_{rental}$                              | $\mu_{interest}$                            |
|------|--------------------|---------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|
| 2008 | Mortgaged<br>Owned | $2.06 \\ 3.41$                              | $2.61 \\ 3.07$                                | $\begin{array}{c} 0.23 \\ 0.71 \end{array}$ | $0.65 \\ 0.00$                              |
| 2009 | Mortgaged<br>Owned | $-0.24 \\ -0.22$                            | $-0.31 \\ -0.48$                              | $\begin{array}{c} 0.78 \\ 0.61 \end{array}$ | $\begin{array}{c} 0.60 \\ 0.00 \end{array}$ |
| 2010 | Mortgaged<br>Owned | $\begin{array}{c} 9.14 \\ 6.47 \end{array}$ | $\begin{array}{c} 8.92 \\ 6.22 \end{array}$   | $\begin{array}{c} 1.28 \\ 0.64 \end{array}$ | $0.87 \\ 0.00$                              |
| 2011 | Mortgaged<br>Owned | $\begin{array}{c} 6.94 \\ 8.56 \end{array}$ | $\begin{array}{c} 9.46 \\ 8.00 \end{array}$   | $\begin{array}{c} 0.61 \\ 1.04 \end{array}$ | $2.97 \\ 0.00$                              |
| 2012 | Mortgaged<br>Owned | $\begin{array}{c} 6.52 \\ 6.35 \end{array}$ | $6.88 \\ 5.87$                                | $\begin{array}{c} 0.78 \\ 0.91 \end{array}$ | $\begin{array}{c} 0.98 \\ 0.00 \end{array}$ |
| 2013 | Mortgaged<br>Owned | $10.59 \\ 11.39$                            | $\begin{array}{c} 10.70 \\ 10.92 \end{array}$ | $\begin{array}{c} 1.30 \\ 0.89 \end{array}$ | $\begin{array}{c} 1.18 \\ 0.00 \end{array}$ |
| 2014 | Mortgaged<br>Owned | $8.30 \\ 8.59$                              | $\begin{array}{c} 8.18\\ 8.17\end{array}$     | $\begin{array}{c} 1.15 \\ 0.69 \end{array}$ | $\begin{array}{c} 0.87 \\ 0.00 \end{array}$ |

• Caveat: proxy mortgage with itemized deduction for interest expense

Chi, LaPoint, & Lin (2021)

# Fact #4: Stock market participants earn lower returns main deck

Annualized holding period return (%): by stock market participation

|                   | $\mu_{HPR}$ | $P_{HPR}^{50}$ | $\sigma_{HPR}$ | N      |
|-------------------|-------------|----------------|----------------|--------|
| Non-stock holders | 24.80       | 3.21           | 107.17         | 17,657 |
| Stock holders     | 12.67       | 2.05           | 74.54          | 79,649 |

- 83% of homeowners with wealth estimates in our sample hold stocks (p-value < 0.001 on difference in means)
- Returns declining in equities as share of wealth

# FACT #5: DOWNWARD-SLOPING HPR TERM STRUCTURE Main deck



- Mirrors results for other asset classes (van Binsbergen & Koijen 2017)
- $\bullet$  Reform flattens short end but shifts profits to HP >24 mos.

Chi, LaPoint, & Lin (2021)

#### ESTIMATING ECONOMIC DEPRECIATION OF PROPERTIES

- Model real estate production function as generalized CES of structure and land quantities
- Property owner maximizes profits subject to paying shadow prices for structure and land inputs (Epple, Gordon, Sieg 2010)
- Under these assumptions can show property depreciation rate is the structure depreciation rate times the structure input share  $s_{t,a}$

$$-\frac{\partial \log P_{t,a}}{\partial a} = \delta_a \cdot s_{t,a} \equiv \delta$$
(23)

• Compute average marginal effect (AME) implied by estimated translog production function to get  $\delta \approx 2\%$  for SFH (3% for apartments)



# Smoothed relationship between prices and age





Chi, LaPoint, & Lin (2021)

#### DEPRECIATION RATE ESTIMATES: REGRESSION RESULTS

|                     | Top Six Metros      |                     |                     | Outside Top Six Metros   |                     |                           |                     |                           |
|---------------------|---------------------|---------------------|---------------------|--------------------------|---------------------|---------------------------|---------------------|---------------------------|
|                     | Single              | family              | Apar                | rtment                   | Single              | e family                  | Apar                | tment                     |
|                     | (1)                 | (2)                 | (3)                 | (4)                      | (5)                 | (6)                       | (7)                 | (8)                       |
| Building age        | 0.013***<br>(0.000) |                     | 0.017***<br>(0.000) |                          | 0.010***<br>(0.000) |                           | 0.016***<br>(0.000) |                           |
| 1(1-5 years)        |                     | 0.000 (0.000)       |                     | $-0.002^{**}$<br>(0.001) |                     | $-0.012^{***}$<br>(0.001) |                     | $-0.009^{***}$<br>(0.001) |
| 1(6-10 years)       |                     | 0.025*** (0.001)    |                     | 0.022*** (0.001)         |                     | 0.010*** (0.002)          |                     | 0.025*** (0.001)          |
| 1(11-15 years)      |                     | 0.036***            |                     | 0.042***                 |                     | 0.025*** (0.001)          |                     | 0.060***                  |
| 1(16-20 years)      |                     | 0.062*** (0.001)    |                     | 0.067***                 |                     | 0.059*** (0.001)          |                     | 0.078*** (0.001)          |
| 1(21-25 years)      |                     | 0.068***            |                     | 0.072*** (0.000)         |                     | 0.062*** (0.001)          |                     | 0.077***                  |
| 1(26-30 years)      |                     | 0.057*** (0.001)    |                     | 0.077***                 |                     | 0.040*** (0.002)          |                     | 0.076***                  |
| 1(31-35 years)      |                     | 0.060***            |                     | 0.085***                 |                     | 0.049*** (0.002)          |                     | 0.087***                  |
| 1(36-40 years)      |                     | 0.055***            |                     | 0.087***                 |                     | 0.038***                  |                     | 0.086***                  |
| 1(41-45 years)      |                     | 0.041*** (0.003)    |                     | 0.092*** (0.001)         |                     | 0.023*** (0.005)          |                     | 0.078***                  |
| 1(46-50 years)      |                     | 0.045***<br>(0.005) |                     | 0.095***<br>(0.002)      |                     | -0.006<br>(0.010)         |                     | 0.083***<br>(0.003)       |
| Controls            | ~                   | ~                   | ~                   | ~                        | ~                   | ~                         | ~                   | ~                         |
| Location FEs        | $\checkmark$        | $\checkmark$        | $\checkmark$        | $\checkmark$             | $\checkmark$        | $\checkmark$              | $\checkmark$        | ~                         |
| N                   | 81,434              | 81,434              | 356,386             | 356,386                  | 47,126              | 47,126                    | 141,617             | 141,617                   |
| Adj. R <sup>2</sup> | 0.761               | 0.773               | 0.846               | 0.852                    | 0.759               | 0.775                     | 0.788               | 0.801                     |

MAIN DECK

Chi, LaPoint, & Lin (2021)

## SPATIAL DISTRIBUTION OF MAIN WEATHER STATIONS





# EXAMPLE: TRACKING FOR TYPHOON MORAKOT (8/2009)





Chi, LaPoint, & Lin (2021)

# CLASSIFICATION SYSTEM FOR TROPICAL CYCLONES



| Category              | Sustained wind speed       |
|-----------------------|----------------------------|
| Violent typhoon       | $\geq 105$ knots (121 mph) |
| Very strong typhoon   | 85-104 knots (98-120 mph)  |
| Typhoon               | 64-84 knots (74-97 mph)    |
| Severe tropical storm | 48-63 knots (55-73 mph)    |
| Tropical storm        | 34-47 knots (39-54 mph)    |
| Tropical depression   | $\leq$ 33 knots (38 mph)   |

Source: World Meteorological Organization Technical Document, Typhoon Committee Operational Manual

Chi, LaPoint, & Lin (2021)

### CYCLICALITY IN TYPHOON SEASON LENGTH AND STORM INCIDENCE



• Cyclonic Niño effects explain why uptick in incidence every 10 years



• But average severity (wind speed and rainfall) on the rise due to climate change

Chi, LaPoint, & Lin (2021)

Real Estate Tobin Taxes

November 27, 2021 56

|                                  | Taipei/Nev  | w Taipei | Other M     | etros    |
|----------------------------------|-------------|----------|-------------|----------|
|                                  | Peak season | Non-peak | Peak season | Non-peak |
| Avg. # typhoon warning days      | 15.8        | 3.9      | 15.8        | 3.9      |
| Max daily precipitation (in)     | 17.5        | 16.7     | 37.8        | 26.7     |
| Cumulative precipitation (in)    | 38.9        | 82.4     | 47.0        | 48.9     |
| Avg. wind speed (mph)            | 3.9         | 4.0      | 3.8         | 4.3      |
| Max wind gust (mph)              | 101.4       | 88.3     | 153.9       | 126.6    |
| Avg. station pressure (hPa)      | 989.7       | 997.4    | 965.4       | 973.1    |
| Min. station pressure (hPa)      | 896.5       | 907.4    | 627.8       | 634.0    |
| Avg. daily high temperature (°F) | 89.5        | 73.6     | 86.3        | 74.6     |
| Max daily high temperature (°F)  | 116.6       | 115.8    | 112.7       | 111.5    |
| N                                | 19,944      | 64,440   | 74,790      | 241,650  |
| # Stations                       | 36          | 36       | 135         | 135      |

Note: Includes observations from a balanced panel of stations (N = 171) reporting key typhoon forecasting variables.

Chi, LaPoint, & Lin (2021)

# MAP OF CUMULATIVE RAINFALL INTENSITY (2005-11) main deck



• Rains during typhoon season concentrated in the south/middle of island

Chi, LaPoint, & Lin (2021)

# MAP OF TYPHOON FORCE WIND DAYS (2005-11) Main deck



• While warnings set for entire island, majority of districts do not experience  $\geq$  74 mph winds in the average typhoon season (imperfect coverage)

Chi, LaPoint, & Lin (2021)

#### NEGATIVE EFFECTS ON VOLUME IN COUNTY CROSS-SECTION

 $Volume_{j,t} = \beta \cdot (Weather_{j,t} \times Summer_t) + \delta_t + \psi_j + \gamma' \cdot \mathbf{X_t} + \varepsilon_{j,t}$ 

|                          | (1)          | (2)          | (3)          | (4)          | (5)          |
|--------------------------|--------------|--------------|--------------|--------------|--------------|
| $Max\ WS\ \times Summer$ | 0.04         |              |              | 0.12         |              |
| Avg. WS $\times Summer$  |              | -0.14        |              |              | -0.01        |
| $Rainfall \times Summer$ |              |              | $-0.04^{**}$ | $-0.03^{**}$ | $-0.04^{**}$ |
| 7-day FEs                | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ~            |
| Day-of-week FEs          | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| County FEs               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Damages controls         | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| N                        | 88,466       | 98,666       | 101,141      | 88,441       | 98,627       |

- 1 mm increase in rainfall  $\implies$  0.03% lower sales volume in the county-level cross-section
- DDD differences out common factors across locations which might be correlated with storm events (e.g. business shutdown responses) Main deck

Chi, LaPoint, & Lin (2021)

## FACTOR LOADINGS ON KEY WEATHER VARIABLES

|                          | Factor 1<br>(Fair weather) | Factor 2<br>(Low pressure) | Factor 3<br>(Wind) | Factor 4<br>(Rain) |
|--------------------------|----------------------------|----------------------------|--------------------|--------------------|
| Avg. station pressure    | 0.37                       | -0.38                      | 0.01               | 0.21               |
| Max station pressure     | 0.37                       | -0.38                      | 0.02               | 0.21               |
| Min station pressure     | 0.37                       | -0.37                      | 0.01               | 0.21               |
| Avg. temperature         | 0.33                       | 0.43                       | -0.01              | 0.19               |
| Max temperature          | 0.33                       | 0.44                       | -0.04              | 0.08               |
| Min temperature          | 0.31                       | 0.42                       | 0.00               | 0.28               |
| Avg. relative humidity   | -0.34                      | 0.04                       | -0.32              | 0.38               |
| Min relative humidity    | -0.33                      | -0.07                      | -0.19              | 0.46               |
| Avg. wind speed          | -0.13                      | -0.01                      | 0.65               | 0.14               |
| Max wind gust            | -0.13                      | 0.06                       | 0.66               | 0.17               |
| Cumulative precipitation | -0.14                      | 0.02                       | 0.00               | 0.58               |

• Identify four factors with eigenvalues > 1 (88% of variation)



• Includes data from all main + automated stations (N = 517)

Chi, LaPoint, & Lin (2021)

# PRINCIPAL WEATHER FACTORS AND REAL ESTATE SALES (MAIN DECK)

|                         | (1)           | (2)          | (3)            | (4)            | (5)                  | (6)            |
|-------------------------|---------------|--------------|----------------|----------------|----------------------|----------------|
| $Factor1 \times Summer$ | $17.54^{***}$ |              |                |                |                      | 6.35           |
|                         | (3.34)        |              |                |                |                      | (6.69)         |
| $Factor2 \times Summer$ |               | -4.46        |                |                |                      | 5.63           |
|                         |               | (6.90)       |                |                |                      | (7.27)         |
| $Factor3 \times Summer$ |               |              | $-17.67^{***}$ |                | $-13.66^{***}$       | $-14.29^{***}$ |
|                         |               |              | (2.89)         |                | (2.74)               | (2.93)         |
| $Factor4 \times Summer$ |               |              |                | $-13.24^{***}$ | $-8.02^{***}$        | -3.42          |
|                         |               |              |                | (2.60)         | (2.32)               | (5.00)         |
| 7-day FEs               | ~             | $\checkmark$ | ~              | $\checkmark$   | <ul> <li></li> </ul> | ~              |
| Day-of-week FEs         | $\checkmark$  | $\checkmark$ | $\checkmark$   | $\checkmark$   | $\checkmark$         | $\checkmark$   |
| Damage Controls         | $\checkmark$  | $\checkmark$ | $\checkmark$   | $\checkmark$   | $\checkmark$         | $\checkmark$   |
| Ν                       | 4,681         | 4,681        | 4,681          | 4,681          | 4,681                | 4,681          |

### NO PENT-UP DEMAND FOR SEVERE RAIN SHOCKS MAIN DECK

 $\mathsf{Volume}_t = \beta_1 \cdot (Rain_t \times Summer_t) + \delta_t + \beta_2 \cdot \mathbb{1}_{t-L,t-1} \{ \overline{Rain} \ge 0.5 \mathsf{in.} \} + \gamma' \cdot \mathbf{X_t} + \varepsilon_t$ 

|                                                         | (1)           | (2)           | (3)           | (4)           |
|---------------------------------------------------------|---------------|---------------|---------------|---------------|
| $Rain_t 	imes Summer_t$                                 | $-0.33^{***}$ | $-0.33^{***}$ | $-0.32^{***}$ | $-0.31^{***}$ |
| $\mathbb{1}_{t-1w,t-1}\{\overline{Rain} \ge 0.5 in.\}$  | $-10.33^{*}$  |               |               |               |
| $\mathbb{1}_{t-2w,t-1}\{\overline{Rain} \geq 0.5 in.\}$ |               | -7.34         |               |               |
| $\mathbb{1}_{t-4w,t-1}\{\overline{Rain} \geq 0.5 in.\}$ |               |               | -3.03         |               |
| $\mathbb{1}_{t-8w,t-1}\{\overline{Rain} \geq 0.5 in.\}$ |               |               |               | 18.85         |
| 7-day FEs                                               | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$  |
| Day-of-week FEs                                         | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$  |
| Damages controls                                        | $\checkmark$  | $\checkmark$  | $\checkmark$  | $\checkmark$  |
| Ν                                                       | 1,973         | 1,973         | 1,973         | 1,973         |

#### NO PRE-TREND IN SALES VOLUME W.R.T. RAINFALL SHOCKS MAIN DECK



## ALSO NO PRE-TREND IN VOLUME CONFIRMED TYPHOONS (MAIN DECK)



## VOLUME REMAINS FLAT AROUND TYPHOON WARNINGS (MAIN DECK



# FOOD FOR THOUGHT: WHO BEARS THE COSTS OF FLIP TAXES?

#### Status change sales (fundamental)

#### Other sales (non-fundamental)



Main deck 🕽